Skip to content

Entities are not being recognised #1

@oldmonkABA

Description

@oldmonkABA

When i run the code I get following output

docx = nlp(u"I am looking for an Italian Restaurant where I can eat")
for word in docx.ents:
print("value",word.text,"entity",word.label_,"start",word.start_char,"end",word.end_char)
('value', u'Italian', 'entity', u'NORP', 'start', 20, 'end', 27)

print(interpreter.parse(u"I am looking for an Italian Restaurant where I can eat"))
{u'entities': [], u'intent': {u'confidence': '0.7245936400661538', u'name': u'restaurant_search'}, 'text': u'I am looking for an Italian Restaurant where I can eat', u'intent_ranking': [{u'confidence': '0.7245936400661538', u'name': u'restaurant_search'}, {u'confidence': '0.16613318075824324', u'name': u'affirm'}, {u'confidence': '0.061131622985489784', u'name': u'greet'}, {u'confidence': '0.04814155619011318', u'name': u'goodbye'}]}

print(interpreter.parse(u"I want an African Spot to eat"))
{u'entities': [], u'intent': {u'confidence': '0.6742354477482855', u'name': u'restaurant_search'}, 'text': u'I want an African Spot to eat', u'intent_ranking': [{u'confidence': '0.6742354477482855', u'name': u'restaurant_search'}, {u'confidence': '0.12795773626363155', u'name': u'affirm'}, {u'confidence': '0.1248807660919913', u'name': u'goodbye'}, {u'confidence': '0.07292604989609185', u'name': u'greet'}]}

print(interpreter.parse(u"Good morning World"))
{u'entities': [], u'intent': {u'confidence': '0.3928691488396195', u'name': u'greet'}, 'text': u'Good morning World', u'intent_ranking': [{u'confidence': '0.3928691488396195', u'name': u'greet'}, {u'confidence': '0.2737002194915276', u'name': u'goodbye'}, {u'confidence': '0.17752522806694152', u'name': u'affirm'}, {u'confidence': '0.15590540360191174', u'name': u'restaurant_search'}]}

Below is the full code :
from rasa_nlu.training_data import load_data
from rasa_nlu.config import RasaNLUModelConfig
from rasa_nlu.model import Trainer
from rasa_nlu import config

Loading DataSet

train_data = load_data('./data/data.json')

Config Backend using Sklearn and Spacy

trainer = Trainer(config.load("config.yaml"))

Training Data

trainer.train(train_data)

Returns the directory the model is stored in (Creat a folder to store model in)

model_directory = trainer.persist('./projects/')

import spacy
nlp = spacy.load('en')

docx = nlp(u"I am looking for an Italian Restaurant where I can eat")
for word in docx.ents:
print("value",word.text,"entity",word.label_,"start",word.start_char,"end",word.end_char)

from rasa_nlu.model import Metadata, Interpreter

where `model_directory points to the folder the model is persisted in

interpreter = Interpreter.load(model_directory)

Prediction of Intent

print(interpreter.parse(u"I am looking for an Italian Restaurant where I can eat"))
print(interpreter.parse(u"I want an African Spot to eat"))
print(interpreter.parse(u"Good morning World"))

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions