@@ -522,15 +522,6 @@ def get_optimization_parameters(self) -> list[str]:
522522 """
523523 return [p .id for p in self .parameters if p .estimate ]
524524
525- def get_optimization_parameter_scales (self ) -> dict [str , str ]:
526- """
527- Return list of optimization parameter scaling strings.
528-
529- See :py:func:`petab.parameters.get_optimization_parameters`.
530- """
531- # TODO: to be removed in v2?
532- return parameters .get_optimization_parameter_scaling (self .parameter_df )
533-
534525 def get_observable_ids (self ) -> list [str ]:
535526 """
536527 Returns dictionary of observable ids.
@@ -595,9 +586,7 @@ def x_fixed_ids(self) -> list[str]:
595586 """Parameter table parameter IDs, for fixed parameters."""
596587 return self .get_x_ids (free = False )
597588
598- def get_x_nominal (
599- self , free : bool = True , fixed : bool = True , scaled : bool = False
600- ) -> list :
589+ def get_x_nominal (self , free : bool = True , fixed : bool = True ) -> list :
601590 """Generic function to get parameter nominal values.
602591
603592 Parameters
@@ -607,9 +596,6 @@ def get_x_nominal(
607596 fixed:
608597 Whether to return fixed parameters, i.e. parameters not to
609598 estimate.
610- scaled:
611- Whether to scale the values according to the parameter scale,
612- or return them on linear scale.
613599
614600 Returns
615601 -------
@@ -620,10 +606,6 @@ def get_x_nominal(
620606 for p in self .parameters
621607 ]
622608
623- if scaled :
624- v = list (
625- parameters .map_scale (v , self .parameter_df [PARAMETER_SCALE ])
626- )
627609 return self ._apply_mask (v , free = free , fixed = fixed )
628610
629611 @property
@@ -641,28 +623,7 @@ def x_nominal_fixed(self) -> list:
641623 """Parameter table nominal values, for fixed parameters."""
642624 return self .get_x_nominal (free = False )
643625
644- @property
645- def x_nominal_scaled (self ) -> list :
646- """Parameter table nominal values with applied parameter scaling"""
647- return self .get_x_nominal (scaled = True )
648-
649- @property
650- def x_nominal_free_scaled (self ) -> list :
651- """Parameter table nominal values with applied parameter scaling,
652- for free parameters.
653- """
654- return self .get_x_nominal (fixed = False , scaled = True )
655-
656- @property
657- def x_nominal_fixed_scaled (self ) -> list :
658- """Parameter table nominal values with applied parameter scaling,
659- for fixed parameters.
660- """
661- return self .get_x_nominal (free = False , scaled = True )
662-
663- def get_lb (
664- self , free : bool = True , fixed : bool = True , scaled : bool = False
665- ):
626+ def get_lb (self , free : bool = True , fixed : bool = True ):
666627 """Generic function to get lower parameter bounds.
667628
668629 Parameters
@@ -672,34 +633,20 @@ def get_lb(
672633 fixed:
673634 Whether to return fixed parameters, i.e. parameters not to
674635 estimate.
675- scaled:
676- Whether to scale the values according to the parameter scale,
677- or return them on linear scale.
678636
679637 Returns
680638 -------
681639 The lower parameter bounds.
682640 """
683641 v = [p .lb if p .lb is not None else nan for p in self .parameters ]
684- if scaled :
685- v = list (
686- parameters .map_scale (v , self .parameter_df [PARAMETER_SCALE ])
687- )
688642 return self ._apply_mask (v , free = free , fixed = fixed )
689643
690644 @property
691645 def lb (self ) -> list :
692646 """Parameter table lower bounds."""
693647 return self .get_lb ()
694648
695- @property
696- def lb_scaled (self ) -> list :
697- """Parameter table lower bounds with applied parameter scaling"""
698- return self .get_lb (scaled = True )
699-
700- def get_ub (
701- self , free : bool = True , fixed : bool = True , scaled : bool = False
702- ):
649+ def get_ub (self , free : bool = True , fixed : bool = True ):
703650 """Generic function to get upper parameter bounds.
704651
705652 Parameters
@@ -709,31 +656,19 @@ def get_ub(
709656 fixed:
710657 Whether to return fixed parameters, i.e. parameters not to
711658 estimate.
712- scaled:
713- Whether to scale the values according to the parameter scale,
714- or return them on linear scale.
715659
716660 Returns
717661 -------
718662 The upper parameter bounds.
719663 """
720664 v = [p .ub if p .ub is not None else nan for p in self .parameters ]
721- if scaled :
722- v = list (
723- parameters .map_scale (v , self .parameter_df [PARAMETER_SCALE ])
724- )
725665 return self ._apply_mask (v , free = free , fixed = fixed )
726666
727667 @property
728668 def ub (self ) -> list :
729669 """Parameter table upper bounds"""
730670 return self .get_ub ()
731671
732- @property
733- def ub_scaled (self ) -> list :
734- """Parameter table upper bounds with applied parameter scaling"""
735- return self .get_ub (scaled = True )
736-
737672 @property
738673 def x_free_indices (self ) -> list [int ]:
739674 """Parameter table estimated parameter indices."""
@@ -790,56 +725,6 @@ def sample_parameter_startpoints_dict(
790725 )
791726 ]
792727
793- # TODO: remove in v2?
794- def unscale_parameters (
795- self ,
796- x_dict : dict [str , float ],
797- ) -> dict [str , float ]:
798- """Unscale parameter values.
799-
800- Parameters
801- ----------
802- x_dict:
803- Keys are parameter IDs in the PEtab problem, values are scaled
804- parameter values.
805-
806- Returns
807- -------
808- The unscaled parameter values.
809- """
810- return {
811- parameter_id : parameters .unscale (
812- parameter_value ,
813- self .parameter_df [PARAMETER_SCALE ][parameter_id ],
814- )
815- for parameter_id , parameter_value in x_dict .items ()
816- }
817-
818- # TODO: remove in v2?
819- def scale_parameters (
820- self ,
821- x_dict : dict [str , float ],
822- ) -> dict [str , float ]:
823- """Scale parameter values.
824-
825- Parameters
826- ----------
827- x_dict:
828- Keys are parameter IDs in the PEtab problem, values are unscaled
829- parameter values.
830-
831- Returns
832- -------
833- The scaled parameter values.
834- """
835- return {
836- parameter_id : parameters .scale (
837- parameter_value ,
838- self .parameter_df [PARAMETER_SCALE ][parameter_id ],
839- )
840- for parameter_id , parameter_value in x_dict .items ()
841- }
842-
843728 @property
844729 def n_estimated (self ) -> int :
845730 """The number of estimated parameters."""
@@ -986,7 +871,6 @@ def add_parameter(
986871 id_ : str ,
987872 estimate : bool | str = True ,
988873 nominal_value : Number | None = None ,
989- scale : str = None ,
990874 lb : Number = None ,
991875 ub : Number = None ,
992876 prior_dist : str = None ,
@@ -1002,7 +886,6 @@ def add_parameter(
1002886 id_: The parameter id
1003887 estimate: Whether the parameter is estimated
1004888 nominal_value: The nominal value of the parameter
1005- scale: The parameter scale
1006889 lb: The lower bound of the parameter
1007890 ub: The upper bound of the parameter
1008891 prior_dist: The type of the prior distribution
@@ -1016,8 +899,6 @@ def add_parameter(
1016899 record [ESTIMATE ] = estimate
1017900 if nominal_value is not None :
1018901 record [NOMINAL_VALUE ] = nominal_value
1019- if scale is not None :
1020- record [PARAMETER_SCALE ] = scale
1021902 if lb is not None :
1022903 record [LOWER_BOUND ] = lb
1023904 if ub is not None :
0 commit comments