Skip to content

Commit 2161162

Browse files
author
Shunichi09
committed
Update: added imgs to readme
1 parent ac7ab11 commit 2161162

File tree

1 file changed

+7
-7
lines changed

1 file changed

+7
-7
lines changed

README.md

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,7 @@
66

77
PythonLinearNonLinearControl is a library implementing the linear and nonlinear control theories in python.
88

9-
![Concepts](assets/concepts.png)
9+
<img src="assets/concept.png" width="500">
1010

1111
# Algorithms
1212

@@ -28,16 +28,16 @@ Following algorithms are implemented in PythonLinearNonlinearControl
2828

2929
- [Linear Model Predictive Control (MPC)](http://www2.eng.cam.ac.uk/~jmm1/mpcbook/mpcbook.html)
3030
- Ref: Maciejowski, J. M. (2002). Predictive control: with constraints.
31-
- [script]()
31+
- [script](PythonLinearNonlinearControl/controllers/mpc.py)
3232
- [Cross Entropy Method (CEM)](https://arxiv.org/abs/1805.12114)
3333
- Ref: Chua, K., Calandra, R., McAllister, R., & Levine, S. (2018). Deep reinforcement learning in a handful of trials using probabilistic dynamics models. In Advances in Neural Information Processing Systems (pp. 4754-4765)
34-
- [script]()
34+
- [script](PythonLinearNonlinearControl/controllers/cem.py)
3535
- [Model Preidictive Path Integral Control (MPPI)](https://arxiv.org/abs/1909.11652)
3636
- Ref: Nagabandi, A., Konoglie, K., Levine, S., & Kumar, V. (2019). Deep Dynamics Models for Learning Dexterous Manipulation. arXiv preprint arXiv:1909.11652.
37-
- [script]()
37+
- [script](PythonLinearNonlinearControl/controllers/mppi.py)
3838
- [Random Shooting Method (Random)](https://arxiv.org/abs/1805.12114)
3939
- Ref: Chua, K., Calandra, R., McAllister, R., & Levine, S. (2018). Deep reinforcement learning in a handful of trials using probabilistic dynamics models. In Advances in Neural Information Processing Systems (pp. 4754-4765)
40-
- [script]()
40+
- [script](PythonLinearNonlinearControl/controllers/random.py)
4141
- [Iterative LQR (iLQR)](https://ieeexplore.ieee.org/document/6386025)
4242
- Ref: Tassa, Y., Erez, T., & Todorov, E. (2012, October). Synthesis and stabilization of complex behaviors through online trajectory optimization. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 4906-4913). IEEE. and [Study Wolf](https://github.com/studywolf/control)
4343
- [script (Coming soon)]()
@@ -93,7 +93,7 @@ pip install -e .
9393
You can run the experiments as follows:
9494

9595
```
96-
python scripts/simple_run.py --model "first-order_lag" --controller "CEM"
96+
python scripts/simple_run.py --model first-order_lag --controller CEM
9797
```
9898

9999
**figures and animations are saved in the ./result folder.**
@@ -103,7 +103,7 @@ python scripts/simple_run.py --model "first-order_lag" --controller "CEM"
103103
When we design control systems, we should have **Model**, **Planner**, **Controller** and **Runner** as shown in the figure.
104104
It should be noted that **Model** and **Environment** are different. As mentioned before, we the algorithms for linear model could be applied to nonlinear enviroments if you have linealized model of nonlinear environments. In addition, you can use Neural Network or any non-linear functions to the model, although this library can not deal with it now.
105105

106-
![Concepts](assets/concepts.png)
106+
<img src="assets/concept.png" width="500">
107107

108108
## Model
109109

0 commit comments

Comments
 (0)