"
- ],
- "text/html": [
- "\n",
- " \n",
- " \n",
- "
\n",
- " [2500/2500 03:13, Epoch 0/1]\n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | Step | \n",
- " Training Loss | \n",
- " Validation Loss | \n",
- " Accuracy | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | 500 | \n",
- " 0.964600 | \n",
- " 0.964276 | \n",
- " 0.500000 | \n",
- "
\n",
- " \n",
- " | 1000 | \n",
- " 0.960000 | \n",
- " 0.937627 | \n",
- " 0.500000 | \n",
- "
\n",
- " \n",
- " | 1500 | \n",
- " 0.949200 | \n",
- " 0.919602 | \n",
- " 0.500000 | \n",
- "
\n",
- " \n",
- " | 2000 | \n",
- " 0.916000 | \n",
- " 0.909444 | \n",
- " 0.500000 | \n",
- "
\n",
- " \n",
- " | 2500 | \n",
- " 0.906600 | \n",
- " 0.906230 | \n",
- " 0.500000 | \n",
- "
\n",
- " \n",
- "
"
- ]
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- ""
- ],
- "text/html": [
- "\n",
- " \n",
- " \n",
- "
\n",
- " [3125/3125 00:14]\n",
- "
\n",
- " "
- ]
- },
- "metadata": {}
- },
- {
- "output_type": "stream",
- "name": "stderr",
- "text": [
- "/usr/local/lib/python3.10/dist-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of π€ Transformers. Use `eval_strategy` instead\n",
- " warnings.warn(\n",
- "max_steps is given, it will override any value given in num_train_epochs\n"
- ]
- },
- {
- "output_type": "stream",
- "name": "stdout",
- "text": [
- "Learning rate: 5e-06 Accuracy: 0.5\n"
- ]
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- ""
- ],
- "text/html": [
- "\n",
- " \n",
- " \n",
- "
\n",
- " [2500/2500 02:34, Epoch 0/1]\n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | Step | \n",
- " Training Loss | \n",
- " Validation Loss | \n",
- " Accuracy | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | 500 | \n",
- " 0.696700 | \n",
- " 0.695665 | \n",
- " 0.509920 | \n",
- "
\n",
- " \n",
- " | 1000 | \n",
- " 0.695600 | \n",
- " 0.693803 | \n",
- " 0.518040 | \n",
- "
\n",
- " \n",
- " | 1500 | \n",
- " 0.693400 | \n",
- " 0.692734 | \n",
- " 0.523360 | \n",
- "
\n",
- " \n",
- " | 2000 | \n",
- " 0.691800 | \n",
- " 0.691876 | \n",
- " 0.525560 | \n",
- "
\n",
- " \n",
- " | 2500 | \n",
- " 0.691800 | \n",
- " 0.691665 | \n",
- " 0.526120 | \n",
- "
\n",
- " \n",
- "
"
- ]
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- ""
- ],
- "text/html": [
- "\n",
- " \n",
- " \n",
- "
\n",
- " [3125/3125 00:12]\n",
- "
\n",
- " "
- ]
- },
- "metadata": {}
- },
- {
- "output_type": "stream",
- "name": "stderr",
- "text": [
- "/usr/local/lib/python3.10/dist-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of π€ Transformers. Use `eval_strategy` instead\n",
- " warnings.warn(\n",
- "max_steps is given, it will override any value given in num_train_epochs\n"
- ]
- },
- {
- "output_type": "stream",
- "name": "stdout",
- "text": [
- "Learning rate: 5e-05 Accuracy: 0.52612\n"
- ]
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- ""
- ],
- "text/html": [
- "\n",
- " \n",
- " \n",
- "
\n",
- " [2500/2500 02:58, Epoch 0/1]\n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | Step | \n",
- " Training Loss | \n",
- " Validation Loss | \n",
- " Accuracy | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | 500 | \n",
- " 0.688100 | \n",
- " 0.673649 | \n",
- " 0.578840 | \n",
- "
\n",
- " \n",
- " | 1000 | \n",
- " 0.664200 | \n",
- " 0.652278 | \n",
- " 0.599360 | \n",
- "
\n",
- " \n",
- " | 1500 | \n",
- " 0.638000 | \n",
- " 0.629875 | \n",
- " 0.639240 | \n",
- "
\n",
- " \n",
- " | 2000 | \n",
- " 0.619400 | \n",
- " 0.619752 | \n",
- " 0.647800 | \n",
- "
\n",
- " \n",
- " | 2500 | \n",
- " 0.616800 | \n",
- " 0.616634 | \n",
- " 0.653120 | \n",
- "
\n",
- " \n",
- "
"
- ]
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- ""
- ],
- "text/html": [
- "\n",
- " \n",
- " \n",
- "
\n",
- " [3125/3125 00:12]\n",
- "
\n",
- " "
- ]
- },
- "metadata": {}
- },
- {
- "output_type": "stream",
- "name": "stderr",
- "text": [
- "/usr/local/lib/python3.10/dist-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of π€ Transformers. Use `eval_strategy` instead\n",
- " warnings.warn(\n",
- "max_steps is given, it will override any value given in num_train_epochs\n"
- ]
- },
- {
- "output_type": "stream",
- "name": "stdout",
- "text": [
- "Learning rate: 0.0005 Accuracy: 0.65312\n"
- ]
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- ""
- ],
- "text/html": [
- "\n",
- " \n",
- " \n",
- "
\n",
- " [2500/2500 02:25, Epoch 0/1]\n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | Step | \n",
- " Training Loss | \n",
- " Validation Loss | \n",
- " Accuracy | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | 500 | \n",
- " 0.686500 | \n",
- " 0.637228 | \n",
- " 0.626240 | \n",
- "
\n",
- " \n",
- " | 1000 | \n",
- " 0.615900 | \n",
- " 0.664938 | \n",
- " 0.622760 | \n",
- "
\n",
- " \n",
- " | 1500 | \n",
- " 0.582600 | \n",
- " 0.574918 | \n",
- " 0.701320 | \n",
- "
\n",
- " \n",
- " | 2000 | \n",
- " 0.549100 | \n",
- " 0.561285 | \n",
- " 0.706720 | \n",
- "
\n",
- " \n",
- " | 2500 | \n",
- " 0.549200 | \n",
- " 0.534774 | \n",
- " 0.726720 | \n",
- "
\n",
- " \n",
- "
"
- ]
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- ""
- ],
- "text/html": [
- "\n",
- " \n",
- " \n",
- "
\n",
- " [3125/3125 00:12]\n",
- "
\n",
- " "
- ]
- },
- "metadata": {}
- },
- {
- "output_type": "stream",
- "name": "stderr",
- "text": [
- "/usr/local/lib/python3.10/dist-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of π€ Transformers. Use `eval_strategy` instead\n",
- " warnings.warn(\n",
- "max_steps is given, it will override any value given in num_train_epochs\n"
- ]
- },
- {
- "output_type": "stream",
- "name": "stdout",
- "text": [
- "Learning rate: 0.005 Accuracy: 0.72672\n"
- ]
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- ""
- ],
- "text/html": [
- "\n",
- " \n",
- " \n",
- "
\n",
- " [2500/2500 03:04, Epoch 0/1]\n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | Step | \n",
- " Training Loss | \n",
- " Validation Loss | \n",
- " Accuracy | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | 500 | \n",
- " 0.686500 | \n",
- " 0.637228 | \n",
- " 0.626240 | \n",
- "
\n",
- " \n",
- " | 1000 | \n",
- " 0.615900 | \n",
- " 0.664938 | \n",
- " 0.622760 | \n",
- "
\n",
- " \n",
- " | 1500 | \n",
- " 0.582600 | \n",
- " 0.574918 | \n",
- " 0.701320 | \n",
- "
\n",
- " \n",
- " | 2000 | \n",
- " 0.549100 | \n",
- " 0.561285 | \n",
- " 0.706720 | \n",
- "
\n",
- " \n",
- " | 2500 | \n",
- " 0.549200 | \n",
- " 0.534774 | \n",
- " 0.726720 | \n",
- "
\n",
- " \n",
- "
"
- ]
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- ""
- ],
- "text/html": [
- "\n",
- " \n",
- " \n",
- "
\n",
- " [3125/3125 00:12]\n",
- "
\n",
- " "
- ]
- },
- "metadata": {}
- },
- {
- "output_type": "stream",
- "name": "stderr",
- "text": [
- "/usr/local/lib/python3.10/dist-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of π€ Transformers. Use `eval_strategy` instead\n",
- " warnings.warn(\n",
- "max_steps is given, it will override any value given in num_train_epochs\n"
- ]
- },
- {
- "output_type": "stream",
- "name": "stdout",
- "text": [
- "Learning rate: 0.005 Accuracy: 0.72672\n"
- ]
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- ""
- ],
- "text/html": [
- "\n",
- " \n",
- " \n",
- "
\n",
- " [2500/2500 02:27, Epoch 0/1]\n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | Step | \n",
- " Training Loss | \n",
- " Validation Loss | \n",
- " Accuracy | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | 500 | \n",
- " 1.332000 | \n",
- " 1.047678 | \n",
- " 0.551920 | \n",
- "
\n",
- " \n",
- " | 1000 | \n",
- " 1.246800 | \n",
- " 0.884091 | \n",
- " 0.574600 | \n",
- "
\n",
- " \n",
- " | 1500 | \n",
- " 0.988700 | \n",
- " 0.730061 | \n",
- " 0.610720 | \n",
- "
\n",
- " \n",
- " | 2000 | \n",
- " 0.837300 | \n",
- " 0.830893 | \n",
- " 0.609360 | \n",
- "
\n",
- " \n",
- " | 2500 | \n",
- " 0.614600 | \n",
- " 0.571852 | \n",
- " 0.713400 | \n",
- "
\n",
- " \n",
- "
"
- ]
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- ""
- ],
- "text/html": [
- "\n",
- " \n",
- " \n",
- "
\n",
- " [3125/3125 00:12]\n",
- "
\n",
- " "
- ]
- },
- "metadata": {}
- },
- {
- "output_type": "stream",
- "name": "stderr",
- "text": [
- "/usr/local/lib/python3.10/dist-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of π€ Transformers. Use `eval_strategy` instead\n",
- " warnings.warn(\n",
- "max_steps is given, it will override any value given in num_train_epochs\n"
- ]
- },
- {
- "output_type": "stream",
- "name": "stdout",
- "text": [
- "Learning rate: 0.05 Accuracy: 0.7134\n"
- ]
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- ""
- ],
- "text/html": [
- "\n",
- " \n",
- " \n",
- "
\n",
- " [2500/2500 02:33, Epoch 0/1]\n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | Step | \n",
- " Training Loss | \n",
- " Validation Loss | \n",
- " Accuracy | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | 500 | \n",
- " 373.884900 | \n",
- " 464.389679 | \n",
- " 0.501080 | \n",
- "
\n",
- " \n",
- " | 1000 | \n",
- " 434.300200 | \n",
- " 237.639359 | \n",
- " 0.523120 | \n",
- "
\n",
- " \n",
- " | 1500 | \n",
- " 248.097100 | \n",
- " 204.130096 | \n",
- " 0.504400 | \n",
- "
\n",
- " \n",
- " | 2000 | \n",
- " 118.084200 | \n",
- " 35.678982 | \n",
- " 0.493760 | \n",
- "
\n",
- " \n",
- " | 2500 | \n",
- " 30.116600 | \n",
- " 1.654839 | \n",
- " 0.519800 | \n",
- "
\n",
- " \n",
- "
"
- ]
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- ""
- ],
- "text/html": [
- "\n",
- " \n",
- " \n",
- "
\n",
- " [3125/3125 00:12]\n",
- "
\n",
- " "
- ]
- },
- "metadata": {}
- },
- {
- "output_type": "stream",
- "name": "stdout",
- "text": [
- "Learning rate: 0.5 Accuracy: 0.5198\n"
- ]
- }
]
},
{
"cell_type": "markdown",
+ "metadata": {
+ "id": "KL6N5tz1mddD"
+ },
"source": [
"---\n",
"# Hyperparameter search β Second option\n",
"\n",
"* Hyperparameter search using [Optuna](https://optuna.org/)"
- ],
- "metadata": {
- "id": "KL6N5tz1mddD"
- }
+ ]
},
{
"cell_type": "code",
- "source": [
- "!pip install optuna"
- ],
+ "execution_count": null,
"metadata": {
- "id": "Hes_HBvOmrKD",
- "outputId": "1e5f78e0-116b-4a95-f731-a4efcfd2a353",
"colab": {
"base_uri": "https://localhost:8080/"
- }
+ },
+ "id": "Hes_HBvOmrKD",
+ "outputId": "1e5f78e0-116b-4a95-f731-a4efcfd2a353"
},
- "execution_count": 13,
- "outputs": [
- {
- "output_type": "stream",
- "name": "stdout",
- "text": [
- "Collecting optuna\n",
- " Downloading optuna-4.0.0-py3-none-any.whl.metadata (16 kB)\n",
- "Collecting alembic>=1.5.0 (from optuna)\n",
- " Downloading alembic-1.13.2-py3-none-any.whl.metadata (7.4 kB)\n",
- "Collecting colorlog (from optuna)\n",
- " Downloading colorlog-6.8.2-py3-none-any.whl.metadata (10 kB)\n",
- "Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from optuna) (1.26.4)\n",
- "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from optuna) (24.1)\n",
- "Requirement already satisfied: sqlalchemy>=1.3.0 in /usr/local/lib/python3.10/dist-packages (from optuna) (2.0.34)\n",
- "Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from optuna) (4.66.5)\n",
- "Requirement already satisfied: PyYAML in /usr/local/lib/python3.10/dist-packages (from optuna) (6.0.2)\n",
- "Collecting Mako (from alembic>=1.5.0->optuna)\n",
- " Downloading Mako-1.3.5-py3-none-any.whl.metadata (2.9 kB)\n",
- "Requirement already satisfied: typing-extensions>=4 in /usr/local/lib/python3.10/dist-packages (from alembic>=1.5.0->optuna) (4.12.2)\n",
- "Requirement already satisfied: greenlet!=0.4.17 in /usr/local/lib/python3.10/dist-packages (from sqlalchemy>=1.3.0->optuna) (3.1.0)\n",
- "Requirement already satisfied: MarkupSafe>=0.9.2 in /usr/local/lib/python3.10/dist-packages (from Mako->alembic>=1.5.0->optuna) (2.1.5)\n",
- "Downloading optuna-4.0.0-py3-none-any.whl (362 kB)\n",
- "\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m362.8/362.8 kB\u001b[0m \u001b[31m6.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
- "\u001b[?25hDownloading alembic-1.13.2-py3-none-any.whl (232 kB)\n",
- "\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m233.0/233.0 kB\u001b[0m \u001b[31m16.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
- "\u001b[?25hDownloading colorlog-6.8.2-py3-none-any.whl (11 kB)\n",
- "Downloading Mako-1.3.5-py3-none-any.whl (78 kB)\n",
- "\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m78.6/78.6 kB\u001b[0m \u001b[31m5.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
- "\u001b[?25hInstalling collected packages: Mako, colorlog, alembic, optuna\n",
- "Successfully installed Mako-1.3.5 alembic-1.13.2 colorlog-6.8.2 optuna-4.0.0\n"
- ]
- }
+ "outputs": [],
+ "source": [
+ "!pip install optuna"
]
},
{
"cell_type": "code",
- "source": [
- "import optuna\n",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 962
+ },
+ "id": "Ag66TkGumvSU",
+ "outputId": "1d0ad2ac-4874-41ef-db7f-c873b23468f1"
+ },
+ "outputs": [],
+ "source": [
+ "import optuna\n",
"\n",
"def objective(trial):\n",
" # Define the search space for hyperparameters\n",
@@ -1142,7 +417,7 @@
" # Set training arguments\n",
" trainer_args = transformers.TrainingArguments(\n",
" \"checkpoints\",\n",
- " evaluation_strategy=\"steps\",\n",
+ " eval_strategy=\"steps\",\n",
" logging_strategy=\"steps\",\n",
" load_best_model_at_end=True,\n",
" eval_steps=500,\n",
@@ -1150,6 +425,7 @@
" learning_rate=learning_rate, # <--- parameter goes here\n",
" per_device_train_batch_size=8,\n",
" max_steps=2500,\n",
+ " report_to=\"none\", # skip wandb login\n",
" )\n",
"\n",
" trainer = transformers.Trainer(\n",
@@ -1171,308 +447,19 @@
"\n",
"study = optuna.create_study(direction=\"maximize\")\n",
"study.optimize(objective, n_trials=3) # <--- How many trials we run, more would be needed in real case!"
- ],
- "metadata": {
- "id": "Ag66TkGumvSU",
- "outputId": "1d0ad2ac-4874-41ef-db7f-c873b23468f1",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 962
- }
- },
- "execution_count": 18,
- "outputs": [
- {
- "output_type": "stream",
- "name": "stderr",
- "text": [
- "/usr/local/lib/python3.10/dist-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of π€ Transformers. Use `eval_strategy` instead\n",
- " warnings.warn(\n",
- "max_steps is given, it will override any value given in num_train_epochs\n"
- ]
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- ""
- ],
- "text/html": [
- "\n",
- " \n",
- " \n",
- "
\n",
- " [2500/2500 03:21, Epoch 0/1]\n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | Step | \n",
- " Training Loss | \n",
- " Validation Loss | \n",
- " Accuracy | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | 500 | \n",
- " 0.672200 | \n",
- " 0.611683 | \n",
- " 0.656320 | \n",
- "
\n",
- " \n",
- " | 1000 | \n",
- " 0.609000 | \n",
- " 0.637774 | \n",
- " 0.634880 | \n",
- "
\n",
- " \n",
- " | 1500 | \n",
- " 0.575700 | \n",
- " 0.579635 | \n",
- " 0.694880 | \n",
- "
\n",
- " \n",
- " | 2000 | \n",
- " 0.552900 | \n",
- " 0.561009 | \n",
- " 0.709440 | \n",
- "
\n",
- " \n",
- " | 2500 | \n",
- " 0.543300 | \n",
- " 0.546472 | \n",
- " 0.720720 | \n",
- "
\n",
- " \n",
- "
"
- ]
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- ""
- ],
- "text/html": [
- "\n",
- " \n",
- " \n",
- "
\n",
- " [3125/3125 00:13]\n",
- "
\n",
- " "
- ]
- },
- "metadata": {}
- },
- {
- "output_type": "stream",
- "name": "stderr",
- "text": [
- "/usr/local/lib/python3.10/dist-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of π€ Transformers. Use `eval_strategy` instead\n",
- " warnings.warn(\n",
- "max_steps is given, it will override any value given in num_train_epochs\n"
- ]
- },
- {
- "output_type": "stream",
- "name": "stdout",
- "text": [
- "Learning rate: 0.0032891344286570525 Filters: 10 Accuracy: 0.72072\n"
- ]
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- ""
- ],
- "text/html": [
- "\n",
- " \n",
- " \n",
- "
\n",
- " [2500/2500 03:13, Epoch 0/1]\n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | Step | \n",
- " Training Loss | \n",
- " Validation Loss | \n",
- " Accuracy | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | 500 | \n",
- " 0.685100 | \n",
- " 0.636767 | \n",
- " 0.627360 | \n",
- "
\n",
- " \n",
- " | 1000 | \n",
- " 0.606900 | \n",
- " 0.614509 | \n",
- " 0.656960 | \n",
- "
\n",
- " \n",
- " | 1500 | \n",
- " 0.565400 | \n",
- " 0.556262 | \n",
- " 0.711400 | \n",
- "
\n",
- " \n",
- " | 2000 | \n",
- " 0.521800 | \n",
- " 0.534269 | \n",
- " 0.724560 | \n",
- "
\n",
- " \n",
- " | 2500 | \n",
- " 0.521600 | \n",
- " 0.522814 | \n",
- " 0.732280 | \n",
- "
\n",
- " \n",
- "
"
- ]
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- ""
- ],
- "text/html": [
- "\n",
- " \n",
- " \n",
- "
\n",
- " [3125/3125 00:12]\n",
- "
\n",
- " "
- ]
- },
- "metadata": {}
- },
- {
- "output_type": "stream",
- "name": "stderr",
- "text": [
- "/usr/local/lib/python3.10/dist-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of π€ Transformers. Use `eval_strategy` instead\n",
- " warnings.warn(\n",
- "max_steps is given, it will override any value given in num_train_epochs\n"
- ]
- },
- {
- "output_type": "stream",
- "name": "stdout",
- "text": [
- "Learning rate: 0.002434791974958158 Filters: 16 Accuracy: 0.73228\n"
- ]
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- ""
- ],
- "text/html": [
- "\n",
- " \n",
- " \n",
- "
\n",
- " [2500/2500 03:04, Epoch 0/1]\n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | Step | \n",
- " Training Loss | \n",
- " Validation Loss | \n",
- " Accuracy | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | 500 | \n",
- " 1.604300 | \n",
- " 0.883112 | \n",
- " 0.592320 | \n",
- "
\n",
- " \n",
- " | 1000 | \n",
- " 1.514200 | \n",
- " 1.527417 | \n",
- " 0.613640 | \n",
- "
\n",
- " \n",
- " | 1500 | \n",
- " 1.391500 | \n",
- " 0.802837 | \n",
- " 0.654840 | \n",
- "
\n",
- " \n",
- " | 2000 | \n",
- " 0.769500 | \n",
- " 0.660751 | \n",
- " 0.682480 | \n",
- "
\n",
- " \n",
- " | 2500 | \n",
- " 0.618300 | \n",
- " 0.536751 | \n",
- " 0.733200 | \n",
- "
\n",
- " \n",
- "
"
- ]
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- ""
- ],
- "text/html": [
- "\n",
- " \n",
- " \n",
- "
\n",
- " [3125/3125 00:13]\n",
- "
\n",
- " "
- ]
- },
- "metadata": {}
- },
- {
- "output_type": "stream",
- "name": "stdout",
- "text": [
- "Learning rate: 0.03601436163120907 Filters: 24 Accuracy: 0.7332\n"
- ]
- }
]
}
],
"metadata": {
+ "accelerator": "GPU",
"colab": {
"collapsed_sections": [
"wo13ZXoZYB6J"
],
- "name": "hf_trainer_cnn.ipynb",
- "provenance": [],
"gpuType": "T4",
- "include_colab_link": true
+ "include_colab_link": true,
+ "name": "hf_trainer_cnn.ipynb",
+ "provenance": []
},
"kernelspec": {
"display_name": "Python 3",
@@ -1483,98 +470,25 @@
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
- "6a6875eea30b4a64b87996f30d6b9b0e": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "HBoxModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_ca38330d9fee4f6eb3db8dd7c62d3b86",
- "IPY_MODEL_ac737737ea08455dbcad7d813b3ba794",
- "IPY_MODEL_f80427bc9bb34432a15c110c41552f1d"
- ],
- "layout": "IPY_MODEL_d2f642b153b441b39d3e13c8dc291de5"
- }
- },
- "ca38330d9fee4f6eb3db8dd7c62d3b86": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_976a880692e2476c8bf9e0f6a6822129",
- "placeholder": "β",
- "style": "IPY_MODEL_bec81b91b5bd4dd9a425ab7c65ccbb3c",
- "value": "Map:β100%"
- }
- },
- "ac737737ea08455dbcad7d813b3ba794": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "FloatProgressModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_f05ac4f5a4d44ec2b659a467f037978d",
- "max": 25000,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_fa20945c5d7a4089abba70a393de4173",
- "value": 25000
- }
- },
- "f80427bc9bb34432a15c110c41552f1d": {
+ "0485ff6f20ec4e3bb225c942ba914ef0": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
"model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_2f7a6c1f2e3a49c1b2b9df8b263e4437",
- "placeholder": "β",
- "style": "IPY_MODEL_eec6fa9095a141ef95285777a970a390",
- "value": "β25000/25000β[01:33<00:00,β204.73βexamples/s]"
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
}
},
- "d2f642b153b441b39d3e13c8dc291de5": {
+ "1bdf39342f314fbba05e0a0d066f2a0f": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -1623,10 +537,34 @@
"width": null
}
},
- "976a880692e2476c8bf9e0f6a6822129": {
+ "1c4288674e7245e9b4697b55950731ef": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_6c8d2ad0ffce4d2081369030a4c4304d",
+ "max": 4203,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_db761c9a410f4b8bb1b2ec88fb0b847a",
+ "value": 4203
+ }
+ },
+ "2f7a6c1f2e3a49c1b2b9df8b263e4437": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -1675,10 +613,10 @@
"width": null
}
},
- "bec81b91b5bd4dd9a425ab7c65ccbb3c": {
+ "432f18bd11114415bd5fb91cce8de324": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
@@ -1690,10 +628,31 @@
"description_width": ""
}
},
- "f05ac4f5a4d44ec2b659a467f037978d": {
+ "484ce987ce134017a6444a883f483eb1": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_8a578b9edde748a9bee19f220e90bcf7",
+ "placeholder": "β",
+ "style": "IPY_MODEL_0485ff6f20ec4e3bb225c942ba914ef0",
+ "value": "Map:β100%"
+ }
+ },
+ "61a2564e98294a3b98f202ecb051e1ce": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -1742,26 +701,31 @@
"width": null
}
},
- "fa20945c5d7a4089abba70a393de4173": {
+ "63f44a1307c44b9e80d33f556bf6c862": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_1bdf39342f314fbba05e0a0d066f2a0f",
+ "placeholder": "β",
+ "style": "IPY_MODEL_432f18bd11114415bd5fb91cce8de324",
+ "value": "β25000/25000β[01:06<00:00,β786.87βexamples/s]"
}
},
- "2f7a6c1f2e3a49c1b2b9df8b263e4437": {
+ "646fc70d8d214df5905d0783193312fa": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -1810,25 +774,10 @@
"width": null
}
},
- "eec6fa9095a141ef95285777a970a390": {
+ "6a6875eea30b4a64b87996f30d6b9b0e": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "6d68fd610b8c48f08ee6f56101119802": {
- "model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
- "model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
@@ -1840,87 +789,21 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
- "IPY_MODEL_484ce987ce134017a6444a883f483eb1",
- "IPY_MODEL_d0d203490e554fe5b62a2aca06ec2b85",
- "IPY_MODEL_63f44a1307c44b9e80d33f556bf6c862"
+ "IPY_MODEL_ca38330d9fee4f6eb3db8dd7c62d3b86",
+ "IPY_MODEL_ac737737ea08455dbcad7d813b3ba794",
+ "IPY_MODEL_f80427bc9bb34432a15c110c41552f1d"
],
- "layout": "IPY_MODEL_fd91bdfb63c9476195d08b56fcf8f503"
+ "layout": "IPY_MODEL_d2f642b153b441b39d3e13c8dc291de5"
}
},
- "484ce987ce134017a6444a883f483eb1": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
- "model_module_version": "1.5.0",
+ "6c8d2ad0ffce4d2081369030a4c4304d": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_8a578b9edde748a9bee19f220e90bcf7",
- "placeholder": "β",
- "style": "IPY_MODEL_0485ff6f20ec4e3bb225c942ba914ef0",
- "value": "Map:β100%"
- }
- },
- "d0d203490e554fe5b62a2aca06ec2b85": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "FloatProgressModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_646fc70d8d214df5905d0783193312fa",
- "max": 25000,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_958792a865f94e04afac06938ab615f9",
- "value": 25000
- }
- },
- "63f44a1307c44b9e80d33f556bf6c862": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_1bdf39342f314fbba05e0a0d066f2a0f",
- "placeholder": "β",
- "style": "IPY_MODEL_432f18bd11114415bd5fb91cce8de324",
- "value": "β25000/25000β[01:06<00:00,β786.87βexamples/s]"
- }
- },
- "fd91bdfb63c9476195d08b56fcf8f503": {
- "model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
- "model_module_version": "1.2.0",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
@@ -1965,10 +848,32 @@
"width": null
}
},
- "8a578b9edde748a9bee19f220e90bcf7": {
+ "6d68fd610b8c48f08ee6f56101119802": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_484ce987ce134017a6444a883f483eb1",
+ "IPY_MODEL_d0d203490e554fe5b62a2aca06ec2b85",
+ "IPY_MODEL_63f44a1307c44b9e80d33f556bf6c862"
+ ],
+ "layout": "IPY_MODEL_fd91bdfb63c9476195d08b56fcf8f503"
+ }
+ },
+ "7a10fc4726e6413397d474c3b5f187b9": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -2017,10 +922,10 @@
"width": null
}
},
- "0485ff6f20ec4e3bb225c942ba914ef0": {
+ "82de00af0c6140c49a1ab5868158b93b": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
@@ -2032,10 +937,10 @@
"description_width": ""
}
},
- "646fc70d8d214df5905d0783193312fa": {
+ "8a578b9edde748a9bee19f220e90bcf7": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -2086,8 +991,8 @@
},
"958792a865f94e04afac06938ab615f9": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
@@ -2100,10 +1005,10 @@
"description_width": ""
}
},
- "1bdf39342f314fbba05e0a0d066f2a0f": {
+ "976a880692e2476c8bf9e0f6a6822129": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -2152,47 +1057,86 @@
"width": null
}
},
- "432f18bd11114415bd5fb91cce8de324": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
- "model_module_version": "1.5.0",
+ "ab20b48f72ce4486a08ccea3f4624486": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
}
},
- "ee04263c2ef846e5b1ba93ad687e37b1": {
+ "ac737737ea08455dbcad7d813b3ba794": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "HBoxModel",
"model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_bde5f2c9b4ef4e8c82fddbdb83a67a1e",
- "IPY_MODEL_1c4288674e7245e9b4697b55950731ef",
- "IPY_MODEL_eb5b4d35582542d1bdd0296817db1daf"
- ],
- "layout": "IPY_MODEL_61a2564e98294a3b98f202ecb051e1ce"
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_f05ac4f5a4d44ec2b659a467f037978d",
+ "max": 25000,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_fa20945c5d7a4089abba70a393de4173",
+ "value": 25000
}
},
"bde5f2c9b4ef4e8c82fddbdb83a67a1e": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
"model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
@@ -2210,55 +1154,85 @@
"value": "Downloadingβbuilderβscript:β100%"
}
},
- "1c4288674e7245e9b4697b55950731ef": {
+ "bec81b91b5bd4dd9a425ab7c65ccbb3c": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "ca38330d9fee4f6eb3db8dd7c62d3b86": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
+ "_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_6c8d2ad0ffce4d2081369030a4c4304d",
- "max": 4203,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_db761c9a410f4b8bb1b2ec88fb0b847a",
- "value": 4203
+ "layout": "IPY_MODEL_976a880692e2476c8bf9e0f6a6822129",
+ "placeholder": "β",
+ "style": "IPY_MODEL_bec81b91b5bd4dd9a425ab7c65ccbb3c",
+ "value": "Map:β100%"
}
},
- "eb5b4d35582542d1bdd0296817db1daf": {
+ "ca67aa97ba124742a9c3688e03f21f96": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "d0d203490e554fe5b62a2aca06ec2b85": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
"model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_7a10fc4726e6413397d474c3b5f187b9",
- "placeholder": "β",
- "style": "IPY_MODEL_82de00af0c6140c49a1ab5868158b93b",
- "value": "β4.20k/4.20kβ[00:00<00:00,β182kB/s]"
+ "layout": "IPY_MODEL_646fc70d8d214df5905d0783193312fa",
+ "max": 25000,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_958792a865f94e04afac06938ab615f9",
+ "value": 25000
}
},
- "61a2564e98294a3b98f202ecb051e1ce": {
+ "d2f642b153b441b39d3e13c8dc291de5": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -2307,62 +1281,69 @@
"width": null
}
},
- "ab20b48f72ce4486a08ccea3f4624486": {
- "model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
- "model_module_version": "1.2.0",
+ "db761c9a410f4b8bb1b2ec88fb0b847a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
"state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "ca67aa97ba124742a9c3688e03f21f96": {
+ "eb5b4d35582542d1bdd0296817db1daf": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_7a10fc4726e6413397d474c3b5f187b9",
+ "placeholder": "β",
+ "style": "IPY_MODEL_82de00af0c6140c49a1ab5868158b93b",
+ "value": "β4.20k/4.20kβ[00:00<00:00,β182kB/s]"
+ }
+ },
+ "ee04263c2ef846e5b1ba93ad687e37b1": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_bde5f2c9b4ef4e8c82fddbdb83a67a1e",
+ "IPY_MODEL_1c4288674e7245e9b4697b55950731ef",
+ "IPY_MODEL_eb5b4d35582542d1bdd0296817db1daf"
+ ],
+ "layout": "IPY_MODEL_61a2564e98294a3b98f202ecb051e1ce"
+ }
+ },
+ "eec6fa9095a141ef95285777a970a390": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
@@ -2374,10 +1355,10 @@
"description_width": ""
}
},
- "6c8d2ad0ffce4d2081369030a4c4304d": {
+ "f05ac4f5a4d44ec2b659a467f037978d": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -2426,10 +1407,31 @@
"width": null
}
},
- "db761c9a410f4b8bb1b2ec88fb0b847a": {
+ "f80427bc9bb34432a15c110c41552f1d": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_2f7a6c1f2e3a49c1b2b9df8b263e4437",
+ "placeholder": "β",
+ "style": "IPY_MODEL_eec6fa9095a141ef95285777a970a390",
+ "value": "β25000/25000β[01:33<00:00,β204.73βexamples/s]"
+ }
+ },
+ "fa20945c5d7a4089abba70a393de4173": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
@@ -2442,10 +1444,10 @@
"description_width": ""
}
},
- "7a10fc4726e6413397d474c3b5f187b9": {
+ "fd91bdfb63c9476195d08b56fcf8f503": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -2493,26 +1495,10 @@
"visibility": null,
"width": null
}
- },
- "82de00af0c6140c49a1ab5868158b93b": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
- "model_module_version": "1.5.0",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
}
}
- },
- "accelerator": "GPU"
+ }
},
"nbformat": 4,
"nbformat_minor": 0
-}
\ No newline at end of file
+}