diff --git a/docs/source/tutorials/np_linalg_tutorial_port.ipynb b/docs/source/tutorials/np_linalg_tutorial_port.ipynb index d26fb92..2193dc2 100644 --- a/docs/source/tutorials/np_linalg_tutorial_port.ipynb +++ b/docs/source/tutorials/np_linalg_tutorial_port.ipynb @@ -29,7 +29,7 @@ "\n", "## Content\n", "\n", - "In this tutorial, we will use a [matrix decomposition](https://en.wikipedia.org/wiki/Matrix_decomposition) from linear algebra, the Singular Value Decomposition, to generate a compressed approximation of an image. We'll use the `face` image from the [scipy.misc](https://docs.scipy.org/doc/scipy/reference/misc.html#module-scipy.misc) module:" + "In this tutorial, we will use a [matrix decomposition](https://en.wikipedia.org/wiki/Matrix_decomposition) from linear algebra, the Singular Value Decomposition, to generate a compressed approximation of an image. We'll use the `face` image from the [scipy.datasets](https://docs.scipy.org/doc/scipy/reference/datasets.html) module:" ] }, { @@ -53,7 +53,7 @@ "metadata": {}, "source": [ ":::{note}\n", - "If you prefer, you can use your own image as you work through this tutorial. In order to transform your image into a NumPy array that can be manipulated, you can use the `imread` function from the [matplotlib.pyplot](https://matplotlib.org/api/_as_gen/matplotlib.pyplot.html#module-matplotlib.pyplot) submodule. Alternatively, you can use the [imageio.imread](https://imageio.readthedocs.io/en/stable/userapi.html#imageio.imread) function from the `imageio` library. Be aware that if you use your own image, you might need to adapt some steps below.\n", + "If you prefer, you can use your own image as you work through this tutorial. In order to transform your image into a NumPy array that can be manipulated, you can use the `imread` function from the [matplotlib.pyplot](https://matplotlib.org/api/_as_gen/matplotlib.pyplot.html#module-matplotlib.pyplot) submodule. Alternatively, you can use the [imageio.imread](https://imageio.readthedocs.io/en/stable/_autosummary/imageio.v3.imread.html) function from the `imageio` library. Be aware that if you use your own image, you might need to adapt some steps below.\n", ":::" ] }, @@ -1041,7 +1041,7 @@ "metadata": {}, "source": [ "From the output above, we can see that every value in red color channel of `img` is an integer value between 0 and 255, representing the level of red in each corresponding image pixel (keep in mind that this might be different if you\n", - "use your own image instead of [scipy.misc.face](https://docs.scipy.org/doc/scipy/reference/generated/scipy.misc.face.html#scipy.misc.face)).\n", + "use your own image instead of [scipy.datasets.face](https://docs.scipy.org/doc/scipy/reference/generated/scipy.datasets.face.html#scipy.datasets.face)).\n", "\n", "Note the data subset now has two dimensions only: height and width of lengths 768 and 1024 respectively." ] @@ -5848,7 +5848,7 @@ "\n", "- [Python tutorial](https://docs.python.org/dev/tutorial/index.html)\n", "- [NumPy Reference](https://numpy.org/devdocs/reference/index.html#reference)\n", - "- [SciPy Tutorial](https://docs.scipy.org/doc/scipy/reference/tutorial/index.html)\n", + "- [SciPy Tutorial](https://docs.scipy.org/doc/scipy/tutorial/index.html)\n", "- [SciPy Lecture Notes](https://scipy-lectures.org)\n", "- [A matlab, R, IDL, NumPy/SciPy dictionary](http://mathesaurus.sf.net/)" ] @@ -5896,9 +5896,9 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3 (ipykernel)", + "display_name": "Python [conda env:base] *", "language": "python", - "name": "python3" + "name": "conda-base-py" }, "language_info": { "codemirror_mode": { @@ -5910,7 +5910,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.7" + "version": "3.11.5" } }, "nbformat": 4,