|
117 | 117 | StableDiffusionXLInpaintPipeline, |
118 | 118 | StableDiffusionXLPipeline, |
119 | 119 | ) |
120 | | -from .wan import WanImageToVideoPipeline, WanPipeline, WanVideoToVideoPipeline |
| 120 | +from .text_to_video_synthesis import TextToVideoSDPipeline |
| 121 | +from .wan import WanAnimatePipeline, WanImageToVideoPipeline, WanPipeline, WanVACEPipeline, WanVideoToVideoPipeline |
121 | 122 | from .wuerstchen import WuerstchenCombinedPipeline, WuerstchenDecoderPipeline |
122 | 123 | from .z_image import ZImageImg2ImgPipeline, ZImagePipeline |
123 | 124 |
|
|
221 | 222 | AUTO_TEXT2VIDEO_PIPELINES_MAPPING = OrderedDict( |
222 | 223 | [ |
223 | 224 | ("wan", WanPipeline), |
| 225 | + ("wan-animate", WanAnimatePipeline), |
| 226 | + ("wan-vace", WanVACEPipeline), |
| 227 | + ("stable-diffusion", TextToVideoSDPipeline), |
224 | 228 | ] |
225 | 229 | ) |
226 | 230 |
|
@@ -1206,3 +1210,246 @@ def from_pipe(cls, pipeline, **kwargs): |
1206 | 1210 | model.register_to_config(**unused_original_config) |
1207 | 1211 |
|
1208 | 1212 | return model |
| 1213 | + |
| 1214 | + |
| 1215 | +class AutoPipelineForText2Video(ConfigMixin): |
| 1216 | + r""" |
| 1217 | +
|
| 1218 | + [`AutoPipelineForText2Video`] is a generic pipeline class that instantiates an text-to-video pipeline class. The |
| 1219 | + specific underlying pipeline class is automatically selected from either the |
| 1220 | + [`~AutoPipelineForText2Video.from_pretrained`] or [`~AutoPipelineForText2Video.from_pipe`] methods. |
| 1221 | +
|
| 1222 | + This class cannot be instantiated using `__init__()` (throws an error). |
| 1223 | +
|
| 1224 | + Class attributes: |
| 1225 | +
|
| 1226 | + - **config_name** (`str`) -- The configuration filename that stores the class and module names of all the |
| 1227 | + diffusion pipeline's components. |
| 1228 | +
|
| 1229 | + """ |
| 1230 | + |
| 1231 | + config_name = "model_index.json" |
| 1232 | + |
| 1233 | + def __init__(self, *args, **kwargs): |
| 1234 | + raise EnvironmentError( |
| 1235 | + f"{self.__class__.__name__} is designed to be instantiated " |
| 1236 | + f"using the `{self.__class__.__name__}.from_pretrained(pretrained_model_name_or_path)` or " |
| 1237 | + f"`{self.__class__.__name__}.from_pipe(pipeline)` methods." |
| 1238 | + ) |
| 1239 | + |
| 1240 | + @classmethod |
| 1241 | + @validate_hf_hub_args |
| 1242 | + def from_pretrained(cls, pretrained_model_or_path, **kwargs): |
| 1243 | + r""" |
| 1244 | + Instantiates a text-to-video Pytorch diffusion pipeline from pretrained pipeline weight. |
| 1245 | +
|
| 1246 | + The from_pretrained() method takes care of returning the correct pipeline class instance by: |
| 1247 | + 1. Detect the pipeline class of the pretrained_model_or_path based on the _class_name property of its |
| 1248 | + config object |
| 1249 | + 2. Find the text-to-video pipeline linked to the pipeline class using pattern matching on pipeline class name. |
| 1250 | +
|
| 1251 | +
|
| 1252 | + The pipeline is set in evaluation mode (`model.eval()`) by default. |
| 1253 | +
|
| 1254 | + If you get the error message below, you need to finetune the weights for your downstream task: |
| 1255 | +
|
| 1256 | + ``` |
| 1257 | + Some weights of UNet2DConditionModel were not initialized from the model checkpoint at stable-diffusion-v1-5/stable-diffusion-v1-5 and are newly initialized because the shapes did not match: |
| 1258 | + - conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated |
| 1259 | + You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference. |
| 1260 | + ``` |
| 1261 | +
|
| 1262 | + Parameters: |
| 1263 | + pretrained_model_or_path (`str` or `os.PathLike`, *optional*): |
| 1264 | + Can be either: |
| 1265 | +
|
| 1266 | + - A string, the *repo id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline |
| 1267 | + hosted on the Hub. |
| 1268 | + - A path to a *directory* (for example `./my_pipeline_directory/`) containing pipeline weights |
| 1269 | + saved using |
| 1270 | + [`~DiffusionPipeline.save_pretrained`]. |
| 1271 | + torch_dtype (`str` or `torch.dtype`, *optional*): |
| 1272 | + Override the default `torch.dtype` and load the model with another dtype. |
| 1273 | + force_download (`bool`, *optional*, defaults to `False`): |
| 1274 | + Whether or not to force the (re-)download of the model weights and configuration files, overriding the |
| 1275 | + cached versions if they exist. |
| 1276 | + cache_dir (`Union[str, os.PathLike]`, *optional*): |
| 1277 | + Path to a directory where a downloaded pretrained model configuration is cached if the standard cache |
| 1278 | + is not used. |
| 1279 | +
|
| 1280 | + proxies (`Dict[str, str]`, *optional*): |
| 1281 | + A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', |
| 1282 | + 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. |
| 1283 | + output_loading_info(`bool`, *optional*, defaults to `False`): |
| 1284 | + Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages. |
| 1285 | + local_files_only (`bool`, *optional*, defaults to `False`): |
| 1286 | + Whether to only load local model weights and configuration files or not. If set to `True`, the model |
| 1287 | + won't be downloaded from the Hub. |
| 1288 | + token (`str` or *bool*, *optional*): |
| 1289 | + The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from |
| 1290 | + `diffusers-cli login` (stored in `~/.huggingface`) is used. |
| 1291 | + revision (`str`, *optional*, defaults to `"main"`): |
| 1292 | + The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier |
| 1293 | + allowed by Git. |
| 1294 | + custom_revision (`str`, *optional*, defaults to `"main"`): |
| 1295 | + The specific model version to use. It can be a branch name, a tag name, or a commit id similar to |
| 1296 | + `revision` when loading a custom pipeline from the Hub. It can be a 🤗 Diffusers version when loading a |
| 1297 | + custom pipeline from GitHub, otherwise it defaults to `"main"` when loading from the Hub. |
| 1298 | + mirror (`str`, *optional*): |
| 1299 | + Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not |
| 1300 | + guarantee the timeliness or safety of the source, and you should refer to the mirror site for more |
| 1301 | + information. |
| 1302 | + device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*): |
| 1303 | + A map that specifies where each submodule should go. It doesn’t need to be defined for each |
| 1304 | + parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the |
| 1305 | + same device. |
| 1306 | +
|
| 1307 | + Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For |
| 1308 | + more information about each option see [designing a device |
| 1309 | + map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map). |
| 1310 | + max_memory (`Dict`, *optional*): |
| 1311 | + A dictionary device identifier for the maximum memory. Will default to the maximum memory available for |
| 1312 | + each GPU and the available CPU RAM if unset. |
| 1313 | + offload_folder (`str` or `os.PathLike`, *optional*): |
| 1314 | + The path to offload weights if device_map contains the value `"disk"`. |
| 1315 | + offload_state_dict (`bool`, *optional*): |
| 1316 | + If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if |
| 1317 | + the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True` |
| 1318 | + when there is some disk offload. |
| 1319 | + low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`): |
| 1320 | + Speed up model loading only loading the pretrained weights and not initializing the weights. This also |
| 1321 | + tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model. |
| 1322 | + Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this |
| 1323 | + argument to `True` will raise an error. |
| 1324 | + use_safetensors (`bool`, *optional*, defaults to `None`): |
| 1325 | + If set to `None`, the safetensors weights are downloaded if they're available **and** if the |
| 1326 | + safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors |
| 1327 | + weights. If set to `False`, safetensors weights are not loaded. |
| 1328 | + kwargs (remaining dictionary of keyword arguments, *optional*): |
| 1329 | + Can be used to overwrite load and saveable variables (the pipeline components of the specific pipeline |
| 1330 | + class). The overwritten components are passed directly to the pipelines `__init__` method. See example |
| 1331 | + below for more information. |
| 1332 | + variant (`str`, *optional*): |
| 1333 | + Load weights from a specified variant filename such as `"fp16"` or `"ema"`. This is ignored when |
| 1334 | + loading `from_flax`. |
| 1335 | +
|
| 1336 | + > [!TIP] > To use private or [gated](https://huggingface.co/docs/hub/models-gated#gated-models) models, log-in |
| 1337 | + with `hf > auth login`. |
| 1338 | +
|
| 1339 | + Examples: |
| 1340 | +
|
| 1341 | + ```py |
| 1342 | + >>> from diffusers import AutoPipelineForText2Video |
| 1343 | +
|
| 1344 | + >>> pipeline = AutoPipelineForText2Video.from_pretrained("damo-vilab/text-to-video-ms-1.7b") |
| 1345 | + >>> video_frames = pipe(prompt, num_frames=32).frames[0] |
| 1346 | + ``` |
| 1347 | + """ |
| 1348 | + |
| 1349 | + cache_dir = kwargs.pop("cache_dir", None) |
| 1350 | + force_download = kwargs.pop("force_download", False) |
| 1351 | + proxies = kwargs.pop("proxies", None) |
| 1352 | + token = kwargs.pop("token", None) |
| 1353 | + local_files_only = kwargs.pop("local_files_only", False) |
| 1354 | + revision = kwargs.pop("revision", None) |
| 1355 | + |
| 1356 | + load_config_kwargs = { |
| 1357 | + "cache_dir": cache_dir, |
| 1358 | + "force_download": force_download, |
| 1359 | + "proxies": proxies, |
| 1360 | + "token": token, |
| 1361 | + "local_files_only": local_files_only, |
| 1362 | + "revision": revision, |
| 1363 | + } |
| 1364 | + |
| 1365 | + config = cls.load_config(pretrained_model_or_path, **load_config_kwargs) |
| 1366 | + orig_class_name = config["_class_name"] |
| 1367 | + text_to_video_cls = _get_task_class(AUTO_TEXT2VIDEO_PIPELINES_MAPPING, orig_class_name) |
| 1368 | + kwargs = {**load_config_kwargs, **kwargs} |
| 1369 | + return text_to_video_cls.from_pretrained(pretrained_model_or_path, **kwargs) |
| 1370 | + |
| 1371 | + @classmethod |
| 1372 | + def from_pipe(cls, pipeline, **kwargs): |
| 1373 | + r""" |
| 1374 | + Instantiates a text-to-video Pytorch diffusion pipeline from another instantiated diffusion pipeline class. |
| 1375 | +
|
| 1376 | + The from_pipe() method takes care of returning the correct pipeline class instance by finding the text-to-video |
| 1377 | + pipeline linked to the pipeline class using pattern matching on pipeline class name. |
| 1378 | +
|
| 1379 | + All the modules the pipeline class contain will be used to initialize the new pipeline without reallocating |
| 1380 | + additional memory. |
| 1381 | +
|
| 1382 | + The pipeline is set in evaluation mode (`model.eval()`) by default. |
| 1383 | +
|
| 1384 | + Parameters: |
| 1385 | + pipeline (`DiffusionPipeline`): |
| 1386 | + an instantiated `DiffusionPipeline` object |
| 1387 | +
|
| 1388 | + Examples: |
| 1389 | +
|
| 1390 | + ```py |
| 1391 | + >>> from diffusers import AutoPipelineForText2Video |
| 1392 | + >>> pipeline = AutoPipelineForText2Video.from_pretrained("damo-vilab/text-to-video-ms-1.7b") |
| 1393 | + >>> output = pipeline(prompt, negative_prompt=negative_prompt, height=height, width=width, num_frames=num_frames).frames[0] |
| 1394 | + ``` |
| 1395 | + """ |
| 1396 | + original_config = dict(pipeline.config) |
| 1397 | + original_cls_name = pipeline.__class__.__name__ |
| 1398 | + |
| 1399 | + # derive the pipeline class to instantiate |
| 1400 | + text_to_video_cls = _get_task_class(AUTO_TEXT2VIDEO_PIPELINES_MAPPING, original_cls_name) |
| 1401 | + |
| 1402 | + # define expected module and optional kwargs given the pipeline signature |
| 1403 | + expected_modules, optional_kwargs = text_to_video_cls._get_signature_keys(text_to_video_cls) |
| 1404 | + |
| 1405 | + pretrained_model_name_or_path = original_config.pop("_name_or_path", None) |
| 1406 | + |
| 1407 | + # allow users pass modules in `kwargs` to override the original pipeline's components |
| 1408 | + passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs} |
| 1409 | + original_class_obj = { |
| 1410 | + k: pipeline.components[k] |
| 1411 | + for k, v in pipeline.components.items() |
| 1412 | + if k in expected_modules and k not in passed_class_obj |
| 1413 | + } |
| 1414 | + |
| 1415 | + # allow users pass optional kwargs to override the original pipelines config attribute |
| 1416 | + passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs} |
| 1417 | + original_pipe_kwargs = { |
| 1418 | + k: original_config[k] |
| 1419 | + for k, v in original_config.items() |
| 1420 | + if k in optional_kwargs and k not in passed_pipe_kwargs |
| 1421 | + } |
| 1422 | + |
| 1423 | + # config that were not expected by original pipeline is stored as private attribute |
| 1424 | + # we will pass them as optional arguments if they can be accepted by the pipeline |
| 1425 | + additional_pipe_kwargs = [ |
| 1426 | + k[1:] |
| 1427 | + for k in original_config.keys() |
| 1428 | + if k.startswith("_") and k[1:] in optional_kwargs and k[1:] not in passed_pipe_kwargs |
| 1429 | + ] |
| 1430 | + for k in additional_pipe_kwargs: |
| 1431 | + original_pipe_kwargs[k] = original_config.pop(f"_{k}") |
| 1432 | + |
| 1433 | + text_to_video_kwargs = {**passed_class_obj, **original_class_obj, **passed_pipe_kwargs, **original_pipe_kwargs} |
| 1434 | + |
| 1435 | + # store unused config as private attribute |
| 1436 | + unused_original_config = { |
| 1437 | + f"{'' if k.startswith('_') else '_'}{k}": original_config[k] |
| 1438 | + for k, v in original_config.items() |
| 1439 | + if k not in text_to_video_kwargs |
| 1440 | + } |
| 1441 | + |
| 1442 | + missing_modules = ( |
| 1443 | + set(expected_modules) - set(text_to_video_cls._optional_components) - set(text_to_video_kwargs.keys()) |
| 1444 | + ) |
| 1445 | + |
| 1446 | + if len(missing_modules) > 0: |
| 1447 | + raise ValueError( |
| 1448 | + f"Pipeline {text_to_video_cls} expected {expected_modules}, but only {set(list(passed_class_obj.keys()) + list(original_class_obj.keys()))} were passed" |
| 1449 | + ) |
| 1450 | + |
| 1451 | + model = text_to_video_cls(**text_to_video_kwargs) |
| 1452 | + model.register_to_config(_name_or_path=pretrained_model_name_or_path) |
| 1453 | + model.register_to_config(**unused_original_config) |
| 1454 | + |
| 1455 | + return model |
0 commit comments