@@ -218,7 +218,7 @@ def create_reg_workflow(name='registration'):
218218 reg .inputs .args = '--float'
219219 reg .inputs .output_warped_image = 'output_warped_image.nii.gz'
220220 reg .inputs .num_threads = 4
221- reg .plugin_args = {'qsub_args' : '-pe orte 4' ,
221+ reg .plugin_args = {'qsub_args' : '-pe orte 4' ,
222222 'sbatch_args' : '--mem=6G -c 4' }
223223 register .connect (stripper , 'out_file' , reg , 'moving_image' )
224224 register .connect (inputnode ,'target_image_brain' , reg ,'fixed_image' )
@@ -428,7 +428,7 @@ def create_fs_reg_workflow(name='registration'):
428428 reg .inputs .args = '--float'
429429 reg .inputs .output_warped_image = 'output_warped_image.nii.gz'
430430 reg .inputs .num_threads = 4
431- reg .plugin_args = {'qsub_args' : '-pe orte 4' ,
431+ reg .plugin_args = {'qsub_args' : '-pe orte 4' ,
432432 'sbatch_args' : '--mem=6G -c 4' }
433433 register .connect (stripper , 'out_file' , reg , 'moving_image' )
434434 register .connect (inputnode ,'target_image' , reg ,'fixed_image' )
@@ -562,17 +562,17 @@ def get_subjectinfo(subject_id, base_dir, task_id, model_id):
562562 'task%03d_run*' % (idx + 1 ))))
563563 runs = [int (val [- 3 :]) for val in files ]
564564 run_ids .insert (idx , runs )
565- json_info = os .path .join (base_dir , subject_id , 'BOLD' ,
566- 'task%03d_run%03d' % (task_id , run_ids [task_id - 1 ][0 ]),
565+ json_info = os .path .join (base_dir , subject_id , 'BOLD' ,
566+ 'task%03d_run%03d' % (task_id , run_ids [task_id - 1 ][0 ]),
567567 'bold_scaninfo.json' )
568568 if os .path .exists (json_info ):
569569 import json
570570 with open (json_info , 'rt' ) as fp :
571571 data = json .load (fp )
572572 TR = data ['global' ]['const' ]['RepetitionTime' ]/ 1000.
573573 else :
574- task_scan_key = os .path .join (base_dir , subject_id , 'BOLD' ,
575- 'task%03d_run%03d' % (task_id , run_ids [task_id - 1 ][0 ]),
574+ task_scan_key = os .path .join (base_dir , subject_id , 'BOLD' ,
575+ 'task%03d_run%03d' % (task_id , run_ids [task_id - 1 ][0 ]),
576576 'scan_key.txt' )
577577 if os .path .exists (task_scan_key ):
578578 TR = np .genfromtxt (task_scan_key )[1 ]
@@ -667,7 +667,7 @@ def analyze_openfmri_dataset(data_dir, subject=None, model_id=None,
667667 name = 'datasource' )
668668 datasource .inputs .base_directory = data_dir
669669 datasource .inputs .template = '*'
670-
670+
671671 if has_contrast :
672672 datasource .inputs .field_template = {'anat' : '%s/anatomy/T1_001.nii.gz' ,
673673 'bold' : '%s/BOLD/task%03d_r*/bold.nii.gz' ,
@@ -909,18 +909,18 @@ def split_files(in_files, splits):
909909 splitfunc , 'in_files' )
910910
911911 if subjects_dir :
912- get_roi_mean = pe .MapNode (fs .SegStats (default_color_table = True ),
912+ get_roi_mean = pe .MapNode (fs .SegStats (default_color_table = True ),
913913 iterfield = ['in_file' ], name = 'get_aparc_means' )
914914 get_roi_mean .inputs .avgwf_txt_file = True
915915 wf .connect (fixed_fx .get_node ('outputspec' ), 'copes' , get_roi_mean , 'in_file' )
916916 wf .connect (registration , 'outputspec.aparc' , get_roi_mean , 'segmentation_file' )
917-
918- get_roi_tsnr = pe .MapNode (fs .SegStats (default_color_table = True ),
917+
918+ get_roi_tsnr = pe .MapNode (fs .SegStats (default_color_table = True ),
919919 iterfield = ['in_file' ], name = 'get_aparc_tsnr' )
920920 get_roi_tsnr .inputs .avgwf_txt_file = True
921921 wf .connect (tsnr , 'tsnr_file' , get_roi_tsnr , 'in_file' )
922922 wf .connect (registration , 'outputspec.aparc' , get_roi_tsnr , 'segmentation_file' )
923-
923+
924924 """
925925 Connect to a datasink
926926 """
0 commit comments