@@ -140,7 +140,7 @@ class SimpleThreshold(BaseInterface):
140140
141141 def _run_interface (self , runtime ):
142142 for fname in self .inputs .volumes :
143- img = nb .load (fname )
143+ img = nb .load (fname , mmap = NUMPY_MMAP )
144144 data = np .array (img .get_data ())
145145
146146 active_map = data > self .inputs .threshold
@@ -196,7 +196,7 @@ def _gen_output_filename(self, name):
196196
197197 def _run_interface (self , runtime ):
198198 for fname in self .inputs .volumes :
199- img = nb .load (fname )
199+ img = nb .load (fname , mmap = NUMPY_MMAP )
200200
201201 affine = img .affine
202202 affine = np .dot (self .inputs .transformation_matrix , affine )
@@ -1158,7 +1158,7 @@ def normalize_tpms(in_files, in_mask=None, out_files=[]):
11581158 Returns the input tissue probability maps (tpms, aka volume fractions)
11591159 normalized to sum up 1.0 at each voxel within the mask.
11601160 """
1161- import nibabel as nib
1161+ import nibabel as nb
11621162 import numpy as np
11631163 import os .path as op
11641164
@@ -1174,15 +1174,15 @@ def normalize_tpms(in_files, in_mask=None, out_files=[]):
11741174 out_file = op .abspath ('%s_norm_%02d%s' % (fname , i , fext ))
11751175 out_files += [out_file ]
11761176
1177- imgs = [nib .load (fim ) for fim in in_files ]
1177+ imgs = [nb .load (fim , mmap = NUMPY_MMAP ) for fim in in_files ]
11781178
11791179 if len (in_files ) == 1 :
11801180 img_data = imgs [0 ].get_data ()
11811181 img_data [img_data > 0.0 ] = 1.0
11821182 hdr = imgs [0 ].header .copy ()
11831183 hdr ['data_type' ] = 16
11841184 hdr .set_data_dtype (np .float32 )
1185- nib .save (nib .Nifti1Image (img_data .astype (np .float32 ), imgs [0 ].affine ,
1185+ nb .save (nb .Nifti1Image (img_data .astype (np .float32 ), imgs [0 ].affine ,
11861186 hdr ), out_files [0 ])
11871187 return out_files [0 ]
11881188
@@ -1195,7 +1195,7 @@ def normalize_tpms(in_files, in_mask=None, out_files=[]):
11951195 msk [weights <= 0 ] = 0
11961196
11971197 if in_mask is not None :
1198- msk = nib .load (in_mask ).get_data ()
1198+ msk = nb .load (in_mask , mmap = NUMPY_MMAP ).get_data ()
11991199 msk [msk <= 0 ] = 0
12001200 msk [msk > 0 ] = 1
12011201
@@ -1207,7 +1207,7 @@ def normalize_tpms(in_files, in_mask=None, out_files=[]):
12071207 hdr = imgs [i ].header .copy ()
12081208 hdr ['data_type' ] = 16
12091209 hdr .set_data_dtype ('float32' )
1210- nib .save (nib .Nifti1Image (probmap .astype (np .float32 ), imgs [i ].affine ,
1210+ nb .save (nb .Nifti1Image (probmap .astype (np .float32 ), imgs [i ].affine ,
12111211 hdr ), out_file )
12121212
12131213 return out_files
@@ -1225,15 +1225,15 @@ def split_rois(in_file, mask=None, roishape=None):
12251225 if roishape is None :
12261226 roishape = (10 , 10 , 1 )
12271227
1228- im = nb .load (in_file )
1228+ im = nb .load (in_file , mmap = NUMPY_MMAP )
12291229 imshape = im .shape
12301230 dshape = imshape [:3 ]
12311231 nvols = imshape [- 1 ]
12321232 roisize = roishape [0 ] * roishape [1 ] * roishape [2 ]
12331233 droishape = (roishape [0 ], roishape [1 ], roishape [2 ], nvols )
12341234
12351235 if mask is not None :
1236- mask = nb .load (mask ).get_data ()
1236+ mask = nb .load (mask , mmap = NUMPY_MMAP ).get_data ()
12371237 mask [mask > 0 ] = 1
12381238 mask [mask < 1 ] = 0
12391239 else :
@@ -1314,7 +1314,7 @@ def merge_rois(in_files, in_idxs, in_ref,
13141314 except :
13151315 pass
13161316
1317- ref = nb .load (in_ref )
1317+ ref = nb .load (in_ref , mmap = NUMPY_MMAP )
13181318 aff = ref .affine
13191319 hdr = ref .header .copy ()
13201320 rsh = ref .shape
@@ -1335,7 +1335,7 @@ def merge_rois(in_files, in_idxs, in_ref,
13351335 for cname , iname in zip (in_files , in_idxs ):
13361336 f = np .load (iname )
13371337 idxs = np .squeeze (f ['arr_0' ])
1338- cdata = nb .load (cname ).get_data ().reshape (- 1 , ndirs )
1338+ cdata = nb .load (cname , mmap = NUMPY_MMAP ).get_data ().reshape (- 1 , ndirs )
13391339 nels = len (idxs )
13401340 idata = (idxs , )
13411341 try :
@@ -1363,15 +1363,15 @@ def merge_rois(in_files, in_idxs, in_ref,
13631363 idxs = np .squeeze (f ['arr_0' ])
13641364
13651365 for d , fname in enumerate (nii ):
1366- data = nb .load (fname ).get_data ().reshape (- 1 )
1367- cdata = nb .load (cname ).get_data ().reshape (- 1 , ndirs )[:, d ]
1366+ data = nb .load (fname , mmap = NUMPY_MMAP ).get_data ().reshape (- 1 )
1367+ cdata = nb .load (cname , mmap = NUMPY_MMAP ).get_data ().reshape (- 1 , ndirs )[:, d ]
13681368 nels = len (idxs )
13691369 idata = (idxs , )
13701370 data [idata ] = cdata [0 :nels ]
13711371 nb .Nifti1Image (data .reshape (rsh [:3 ]),
13721372 aff , hdr ).to_filename (fname )
13731373
1374- imgs = [nb .load (im ) for im in nii ]
1374+ imgs = [nb .load (im , mmap = NUMPY_MMAP ) for im in nii ]
13751375 allim = nb .concat_images (imgs )
13761376 allim .to_filename (out_file )
13771377
0 commit comments