@@ -124,6 +124,7 @@ def create_reg_workflow(name='registration'):
124124 'transformed_files' ,
125125 'transformed_mean' ,
126126 'anat2target' ,
127+ 'mean2anat_mask'
127128 ]),
128129 name = 'outputspec' )
129130
@@ -171,6 +172,13 @@ def create_reg_workflow(name='registration'):
171172 register .connect (mean2anat , 'out_matrix_file' ,
172173 mean2anatbbr , 'in_matrix_file' )
173174
175+ """
176+ Create a mask of the median image coregistered to the anatomical image
177+ """
178+
179+ mean2anat_mask = Node (fsl .BET (mask = True ), name = 'mean2anat_mask' )
180+ register .connect (mean2anatbbr , 'out_file' , mean2anat_mask , 'in_file' )
181+
174182 """
175183 Convert the BBRegister transformation to ANTS ITK format
176184 """
@@ -276,6 +284,8 @@ def create_reg_workflow(name='registration'):
276284 register .connect (warpall , 'output_image' , outputnode , 'transformed_files' )
277285 register .connect (mean2anatbbr , 'out_matrix_file' ,
278286 outputnode , 'func2anat_transform' )
287+ register .connect (mean2anat_mask , 'mask_file' ,
288+ outputnode , 'mean2anat_mask' )
279289 register .connect (reg , 'composite_transform' ,
280290 outputnode , 'anat2target_transform' )
281291
@@ -333,7 +343,8 @@ def create_fs_reg_workflow(name='registration'):
333343 'transformed_files' ,
334344 'min_cost_file' ,
335345 'anat2target' ,
336- 'aparc'
346+ 'aparc' ,
347+ 'mean2anat_mask'
337348 ]),
338349 name = 'outputspec' )
339350
@@ -349,7 +360,7 @@ def create_fs_reg_workflow(name='registration'):
349360 register .connect (fssource , 'T1' , convert , 'in_file' )
350361
351362 # Coregister the median to the surface
352- bbregister = Node (freesurfer .BBRegister (),
363+ bbregister = Node (freesurfer .BBRegister (registered_file = True ),
353364 name = 'bbregister' )
354365 bbregister .inputs .init = 'fsl'
355366 bbregister .inputs .contrast_type = 't2'
@@ -359,6 +370,10 @@ def create_fs_reg_workflow(name='registration'):
359370 register .connect (inputnode , 'mean_image' , bbregister , 'source_file' )
360371 register .connect (inputnode , 'subjects_dir' , bbregister , 'subjects_dir' )
361372
373+ # Create a mask of the median coregistered to the anatomical image
374+ mean2anat_mask = Node (fsl .BET (mask = True ), name = 'mean2anat_mask' )
375+ register .connect (bbregister , 'registered_file' , mean2anat_mask , 'in_file' )
376+
362377 """
363378 use aparc+aseg's brain mask
364379 """
@@ -500,6 +515,8 @@ def create_fs_reg_workflow(name='registration'):
500515 outputnode , 'out_reg_file' )
501516 register .connect (bbregister , 'min_cost_file' ,
502517 outputnode , 'min_cost_file' )
518+ register .connect (mean2anat_mask , 'mask_file' ,
519+ outputnode , 'mean2anat_mask' )
503520 register .connect (reg , 'composite_transform' ,
504521 outputnode , 'anat2target_transform' )
505522 register .connect (merge , 'out' , outputnode , 'transforms' )
@@ -964,6 +981,8 @@ def get_subs(subject_id, conds, run_id, model_id, task_id):
964981 subs .append (('/model%03d/task%03d_' % (model_id , task_id ), '/' ))
965982 subs .append (('_bold_dtype_mcf_bet_thresh_dil' , '_mask' ))
966983 subs .append (('_output_warped_image' , '_anat2target' ))
984+ subs .append (('median_flirt_brain_mask' , 'median_brain_mask' ))
985+ subs .append (('median_bbreg_brain_mask' , 'median_brain_mask' ))
967986 return subs
968987
969988 subsgen = pe .Node (niu .Function (input_names = ['subject_id' , 'conds' , 'run_id' ,
@@ -998,6 +1017,7 @@ def get_subs(subject_id, conds, run_id, model_id, task_id):
9981017 ('outputspec.motion_plots' ,
9991018 'qa.motion.plots' ),
10001019 ('outputspec.mask' , 'qa.mask' )])])
1020+ wf .connect (registration , 'outputspec.mean2anat_mask' , datasink , 'qa.mask.mean2anat' )
10011021 wf .connect (art , 'norm_files' , datasink , 'qa.art.@norm' )
10021022 wf .connect (art , 'intensity_files' , datasink , 'qa.art.@intensity' )
10031023 wf .connect (art , 'outlier_files' , datasink , 'qa.art.@outlier_files' )
0 commit comments