From df6c93406d497002a88b9083a4b7fce1cd1f6bc9 Mon Sep 17 00:00:00 2001 From: Faisalhakimi22 Date: Sat, 15 Nov 2025 15:48:21 +0500 Subject: [PATCH] Add get_missing_summary helper for dataset missing values --- docs/index.md | 9 + openml/datasets/dataset.py | 20 + .../www/datasets/40945/dataset_40945.pkl.py3 | Bin 0 -> 108828 bytes .../www/datasets/40945/dataset_40945.pq | Bin 0 -> 57430 bytes .../openml/www/datasets/40945/description.xml | 26 + .../www/locks/datasets.functions.get_dataset | 0 .../openml/test/datasets/123/description.xml | 19 + .../org/openml/test/datasets/20/dataset.arff | 863 ++++++++++++++++++ .../openml/test/datasets/20/dataset.pkl.py3 | Bin 0 -> 24359 bytes .../openml/test/datasets/20/description.xml | 98 ++ .../org/openml/test/datasets/20/features.xml | 85 ++ .../openml/test/datasets/20/features.xml.pkl | Bin 0 -> 598 bytes .../org/openml/test/flows/205905/flow.xml | 546 +++++++++++ .../test/locks/datasets.functions.get_dataset | 0 .../test/locks/flows.functions.get_flow | 0 .../openml/test/locks/runs.functions.get_run | 0 .../test/locks/tasks.functions.get_task | 0 .../org/openml/test/tasks/119/datasplits.arff | 776 ++++++++++++++++ .../openml/test/tasks/119/datasplits.pkl.py3 | Bin 0 -> 3855 bytes .../org/openml/test/tasks/119/task.xml | 36 + .../org/openml/test/tasks/733/task.xml | 32 + .../description.xml | 34 + .../flow.xml | 511 +++++++++++ .../model.pkl | Bin 0 -> 963 bytes .../predictions.arff | 271 ++++++ .../misc/features_with_whitespaces.xml.pkl | Bin 0 -> 253 bytes tests/test_datasets/test_dataset.py | 10 + 27 files changed, 3336 insertions(+) create mode 100644 openml/tests.test_datasets.test_dataset.OpenMLDatasetTest.test_get_data_pandas/org/openml/www/datasets/40945/dataset_40945.pkl.py3 create mode 100644 openml/tests.test_datasets.test_dataset.OpenMLDatasetTest.test_get_data_pandas/org/openml/www/datasets/40945/dataset_40945.pq create mode 100644 openml/tests.test_datasets.test_dataset.OpenMLDatasetTest.test_get_data_pandas/org/openml/www/datasets/40945/description.xml create mode 100644 openml/tests.test_datasets.test_dataset.OpenMLDatasetTest.test_get_data_pandas/org/openml/www/locks/datasets.functions.get_dataset create mode 100644 openml/tests.test_runs.test_run.TestRun.test_offline_and_online_run_identical/org/openml/test/datasets/123/description.xml create mode 100644 openml/tests.test_runs.test_run.TestRun.test_offline_and_online_run_identical/org/openml/test/datasets/20/dataset.arff create mode 100644 openml/tests.test_runs.test_run.TestRun.test_offline_and_online_run_identical/org/openml/test/datasets/20/dataset.pkl.py3 create mode 100644 openml/tests.test_runs.test_run.TestRun.test_offline_and_online_run_identical/org/openml/test/datasets/20/description.xml create mode 100644 openml/tests.test_runs.test_run.TestRun.test_offline_and_online_run_identical/org/openml/test/datasets/20/features.xml create mode 100644 openml/tests.test_runs.test_run.TestRun.test_offline_and_online_run_identical/org/openml/test/datasets/20/features.xml.pkl create mode 100644 openml/tests.test_runs.test_run.TestRun.test_offline_and_online_run_identical/org/openml/test/flows/205905/flow.xml create mode 100644 openml/tests.test_runs.test_run.TestRun.test_offline_and_online_run_identical/org/openml/test/locks/datasets.functions.get_dataset create mode 100644 openml/tests.test_runs.test_run.TestRun.test_offline_and_online_run_identical/org/openml/test/locks/flows.functions.get_flow create mode 100644 openml/tests.test_runs.test_run.TestRun.test_offline_and_online_run_identical/org/openml/test/locks/runs.functions.get_run create mode 100644 openml/tests.test_runs.test_run.TestRun.test_offline_and_online_run_identical/org/openml/test/locks/tasks.functions.get_task create mode 100644 openml/tests.test_runs.test_run.TestRun.test_offline_and_online_run_identical/org/openml/test/tasks/119/datasplits.arff create mode 100644 openml/tests.test_runs.test_run.TestRun.test_offline_and_online_run_identical/org/openml/test/tasks/119/datasplits.pkl.py3 create mode 100644 openml/tests.test_runs.test_run.TestRun.test_offline_and_online_run_identical/org/openml/test/tasks/119/task.xml create mode 100644 openml/tests.test_runs.test_run.TestRun.test_offline_and_online_run_identical/org/openml/test/tasks/733/task.xml create mode 100644 openml/tests.test_runs.test_run.TestRun.test_offline_and_online_run_identical/runs/162880322156049587682907720944831787496/description.xml create mode 100644 openml/tests.test_runs.test_run.TestRun.test_offline_and_online_run_identical/runs/162880322156049587682907720944831787496/flow.xml create mode 100644 openml/tests.test_runs.test_run.TestRun.test_offline_and_online_run_identical/runs/162880322156049587682907720944831787496/model.pkl create mode 100644 openml/tests.test_runs.test_run.TestRun.test_offline_and_online_run_identical/runs/162880322156049587682907720944831787496/predictions.arff create mode 100644 tests/files/misc/features_with_whitespaces.xml.pkl diff --git a/docs/index.md b/docs/index.md index 1058c3956..ca06267f8 100644 --- a/docs/index.md +++ b/docs/index.md @@ -23,6 +23,15 @@ dataset = openml.datasets.get_dataset("credit-g") # or by ID get_dataset(31) X, y, categorical_indicator, attribute_names = dataset.get_data(target="class") ``` +Get a missing-value summary for a dataset: + +```python +import openml + +dataset = openml.datasets.get_dataset(31) +summary = dataset.get_missing_summary() +``` + Get a [task](https://docs.openml.org/concepts/tasks/) for [supervised classification on credit-g](https://www.openml.org/search?type=task&id=31&source_data.data_id=31): ```python diff --git a/openml/datasets/dataset.py b/openml/datasets/dataset.py index fa83d2b8a..cc82d87d1 100644 --- a/openml/datasets/dataset.py +++ b/openml/datasets/dataset.py @@ -794,6 +794,26 @@ def get_data( # noqa: C901 assert isinstance(y, pd.Series) return x, y, categorical_mask, attribute_names + def get_missing_summary(self) -> dict: + """Returns a missing-value summary for the dataset. + + Returns + ------- + dict + { + "n_missing_total": int, + "missing_per_column": dict + } + """ + df, _, _, _ = self.get_data() + missing_per_column = df.isna().sum().to_dict() + n_missing_total = sum(missing_per_column.values()) + + return { + "n_missing_total": n_missing_total, + "missing_per_column": missing_per_column, + } + def _load_features(self) -> None: """Load the features metadata from the server and store it in the dataset object.""" # Delayed Import to avoid circular imports or having to import all of dataset.functions to diff --git a/openml/tests.test_datasets.test_dataset.OpenMLDatasetTest.test_get_data_pandas/org/openml/www/datasets/40945/dataset_40945.pkl.py3 b/openml/tests.test_datasets.test_dataset.OpenMLDatasetTest.test_get_data_pandas/org/openml/www/datasets/40945/dataset_40945.pkl.py3 new file mode 100644 index 0000000000000000000000000000000000000000..95d46f371a28068515aef7a6073140adf0268606 GIT binary patch literal 108828 zcmeFadywSmn%6abo7tH;bNYU%zD>@|nW>uHneMt**CH%gm+tEBx}B=t>7BCyFJMo(Sb2-~M8|)!g6cY;RXu8uMqKo;B!SJMk<3{-0vty@f7SpX9^;uX5{P4Qycl z84A^1|MP!VAHL^*QU`|hx%0XJYoUOzw1S_#t!lymY8%?yK;FRS3;=jTZx@FQt^6lH z7&%sj!Qu>5`V6X%Ls{GKBesuqHfyT0mg;B_X#vcnA$_nDCz(2pYhSEkK0zEQ45UBa zBCM`Z?se3kQk#51y-niOaiDxYo8B51#y)Y{{|R7kV88S2Wx68v(qsmB{*lUU-t_C( z^7;z&Q#cB1=1=OHzJ#*AD)8#m;_U?R8T;q$Y{PxjlZC~ELGxMSsHwyY0@h+}f`uJ;k5O4h=Dd;PISp)G$BUXQo&l2{)8_Wtp4j;}3^Z_wCoT2UNK3y6JF+t>1T z)aR7q4Zb7(v!0^z#QkXm%@zkvh5C{sN#ok+Uhl07vzf2Rn5cr(r!zFX%sf;yf)ZOtRKIT(T|ev6~=x3|bE;-}Z8p<^+fL<;?#d*Lu* zG2+U*`L_sGEVtijQ9deVD)}bBQ7Nj`zcg6-A_VnRNul^ZhAT7+g@r$K)Qq%==oiM~ zR5a{Eg~sDwK0+E@!=!%_eTCop8ptsU#k8JpDkN<%hbzvPCM%*z@bK@^}$HXo)R_vW&ha%Qn$VVH1#(dp|7dP>10kV#;ykW$=6^1W<#X%G=D0|zgV4( zl$Qww#b5dkJaIEpm5Q8`Qqi~bB~8{lK|cnL58W%X3>tl$u)WL&%fIDA6bQR-cdry91^b=)K{ac&vO^*eU$iQl%|`p6 z)!94%^4)XYHwbZ90J!`9e-SK4TyYij@KsyH|Qw_dTrcCw?8lj9cY; zz0&xkv{Y@k@08~2)poW~IoK^d&FTlu2JsQ&*WNo4&cS;MLEq<4tv?|Y=1W<0~ z4Qz;o3geX)o2{(cAoTLJygKjusM+4_WTn|wrMk0g)7&jI1CB7qqta|?Xr|I`S1ST& zt67@M8r4d@{V{=+a$}1CjX|c7!3Vf{kJ47$P$!?{&)ofR@qwbZw z4IQ8CHutl3=@Co$wEXN@y#hS+ZV4M(FS6DabJi=Rq1oN6Rc{^~R7#84KGOoi)pF|~ z+sU3+4%sX9xl>xp_Jy@8<@Q0d^+{>AS-(?y)ZA^99%Y-&jic^JsIc+#iqgRy}4zGTI#sbmKS)r!xe4Kavr%~Uq`UQ{F8Yt>D*V9OA|-=pquu^tfm8kC0CGohfg z)NH`=jYET=vKtojnC&brG+%%wK~~*rRuk2%HQO0IkGkh)s;#XE?z}ifh^n?48z9TU zeU$BKW3SFs+q=zYUN%P%u-ae|rG=yJU|s`|g{pw9z-mBug_i9KBo=2Z?~8Vix*yNf zpko9;bN|!zgUa@H)@U=jPqvhGTGfM>aKK&$csFP28E9i!UQPRFyAZ_F3N&=oJx6t8 z&#R081bVXplc>FM@NCvXk!>?m?y5f(wQQ!xxxsx6>-o<`5Pg1YcLx zKD0IfW-6@%qP$1l3)CPUY)9eB`TZ)JJTQY~0Jn3Lgu&p-J)^acXIjk{hR{UI2q`cp z&TQ>ut;#{^NfUBq+B-dM#oS9B31ehLz#Jk122FC}?o4NMFJM@51(su5_e*O{*!G|_ zG{3)}N%X$VpoP{JQ@lIVVZU=E1+*iB9To)LOy@u%A%ilsoXy?p1`^W8ZtUy|3zugz zNL9nANxkx=aDtqBZcC{|J&)RHL+~Hxm4%J>+R{*A92N$Q?H~h@ zODq~%hbWJ_zlw@>WuxM9m~mWkM;dNHLG?=3XtqiZDviqXYUR01ISVzseK3(lXFUBf=1_L|L|W>ds}i=O+86$p2^DS=U%&Gw&d066?ttY_%H z2C^6s6D58k7i*uj)_dd0>F^TFQZ+ijUtYTKcpdAp&nGlS`)5gQzGNfwyN!CRW|tAY#kl# z+atrP(gGMqLiF)cvL!VV!JJkkzv$Q#9ii{~Q%|Z&#b8DbnuWq8qZp_xJ+u~E7 zB#2ZLdSer-={j~wlDknDG&!qkQh8&xx&I7ChzMHGT3Klga@^cRHL-)SwkTw|v094<%39K*LhTXU%wvSPs%ME<}R4{v7)OZZL~8T4e*Xt!&%j z1)^TPaC5fRY;UmFv)QwQB-S1{Y9v2GwUdHu$|{0??Wp_Rsit5UhJGUE187J_S<;ZG z<2v?oCW0QA?d&6013f!LuIY}tV}&}9Q>-ivC7zoxQpQ%z4l6B2yo^m66yIt^+o*Ih3@y3gtP@dP@&rK%sdN5rfz;@sA#v-9-@KLO{#w0A6Wf zqHTSQ<%5@i^@_?jbLW$uG1jY4_iVGh-;_n(X>3{hLi3w*lEiV%!Q_C9H37u%;e3W| zu$#Tm&av*9CN3xHZfK=mMSrZy)e-J)&C8?GFeV<+XJ#DY;dQEQB+Kpj4zQ>CoB@_P zC@tj2wfX0W-q_zoC7i9k7w)5cwbM>LB7UguejNqV*sWAeY#Qlovni#aGWr-M12Eva zN;7d)95^?PP*sOLe$2zxiz*8neAq%>?8tI_7vHMlW++&ksWfUCW3ex2$^!&D%c8|W zry==o>oz%>vo|!=*I*vJ)=f(y75gifu$r-!B&d3Z))odTOJWhPBOjUuEDS5-gF+c7 zQDGoV3IEOxq|CZ*o6(aUpeK`;g(n8983YIjHQ2+tcZ>%kZ8d9|!FY?>4j6!Toe`6Z zD0>y(qF67(@nJj5HnBQd#z~{S)qvU4A32Gdlf1?^()JpCy?wFyy1R4-JvUQ~Cq zMC@)H18JGmNdC{REzVH$C6+y~fz|JMRTINhY-9K`Qywin&+M!e<>>>0ymR->3Sive zNeW$^16fPK48UFZfesR30e=<2`AM;ssd}nm?`r*!RUBe!n!R-XL9~^E<%V;3=>Z{- zeCg$V_d9PtAhje{xpPgit$g)HRjhzhnHq?96%&xXI22+6giU6e6$W5c7aml1>eZ(2 zx0^liAn_TW?{I+(&u%8KguVG#B?ga&L46)zz!>5#2DsP0Z_nE?V3oM`I;W_t!=#^vIpvHq>0%*)iyoKkN#*N!$cX-&ima6HVuZ;O7{! ztoE7c%oi6aE0XHXh3d0sASbTm5pJ5qC869c;Jlkx8yicdVjr8KH1u!_*#r#oy>MfJ z1t7n+(A=qPG@DU1n!QMnR3uX>d+d{Dw-=gqOrK=aCFN3Dfo)mTSWg4c)Yl^D7PKBa z`~)x5W`B1^o7STWU^o+AZdT~F{;JKa!M$bWh8}~!^j}{GVw6p zqfe;m!N8hrMb%{a&BxV!qCDminfHRtvP?J}si*k$aG{zp44AyWG!zMs(6LBEvhl*> zI;Kh7QVY%D5Ik;GIuM)|Yz(OQnZltr7GV*!wh)>;OMDc}ND!|5SgfoylOHYND%E{u zvC{6e;uH_S1GG|lgq5>cc@ef^UWQre!BKZ&u}ahlfObCBw}8S{b+2R{w*$R-xQZ4# zt;(Uu?qjvK_^7(DcFfeeoGI9CXuZ1ALXfXEu}5h;K-=7&MYbF&3ekjJ2ra}qjS-?W z3kt8q0G!QJIrMNhgI!r{M(Y)iUH0>A{ZOoZOBL=@8w!y!2STZMc~A7l2}vTG5Nd=c zW%*+jEP}B@9GLlKF2Bbi0kSCWit7)WMdodR?rTfgPNy2<7A78|FuJ^yK}N|gboY=h zm%ssnRW_gW_bNgA7PAdd%(i%;dyWcEA_a*PPy)w2pREcm9M&Cj%tXu5<}C51Xrl$wRrV}VK6p;m3=>G| zNp;^$CJ1d{Y4ZUVatMF77=O*kL#%dA`2Gq)5-?=9D=$@W!toxaf^p^ z;=zroA)>-MLiZSDy}5$Vnw1VqE1NjcU>kE7ErK|+^QD0mPOQQXmFqH~RfmlQtKD2_ zA1EN?TVV56IK|s(fJUls$7*1nCpJ|F1qa9rJ5}tk#qX{VZ*4O*!99XBoytqc)q16c z+q*@C`4-YPP*~haS0QXe8$!EC{Q+F%{iG=5Bwk+)48p{pRiA6WR}tCG#s)6+z$%A1 zL0JVpAS@>CK}e)JNGDW=0HuzA8X}kPB+{QLGLGm|*jr*Jgzeo!D8YN{*#Ys&qwd-_ zYs~oltzB1T#zfm0j!&!d(#C2YXtK}HU6ooB2rg6Ast{Gxw%C?SwS(`~qLWIwc^EfqO*7h9=Q-Ua|AphMsDty%p5{x9JJW6Cy>0mrWwKB zCqUiU+a<~#!f-BMalO~%tOj&PqdlIcloZ6VW5G4VIk61MS4LRRc$R?8MbL0+6go%u zYr@4(fHCm39g&%?={bTYxGM=`4#C&fnw1Se4NhAg3d6qGfp9u)JFWOMM5-NJ_RBA|xQk zW(eP*Kxj_0fQoj&gQ+E^f;;Z5DIi6;6u@k=1J;y?&_vaP*+YW+s17&dZ#V^MeGu)9bE6clyc{2{(9aHk}0!D4mcOZq==rog-Vvt zQ_D(hKGp>-+pOBh^(?DzCpWje)vV*fpy1cD9k6O#WBOJHj^K~;@g|ZnEPTT}ZiN8e zT}NZXP$n{&+D&4mYZ5ek6s9vAa)Pdp^EyE8sl+`pTXo4!D*^w5 zb*zI%wbTA|rmjbFLWE)k7~4dz>)S|LRKt3`ncVLTuAHxc*O3Ndhr!-uE4GLjvE0B6F2Yc? z7FidzQVVD~?fgo{<4{a^uTag5ef72k3(Xyn7KFq=#xXxG8FSwXWZ4E8 z#i{w|mOOXpMu*@C^>?3;R1yK=Ak9c%Nr>RM$Y#Fwy@WQBMg7dT)x3x1$b8>J=_ zwH4<2Fx5reuOHxpD(41ci1aV^UL1JssUKn5qM%aj4xSjbm`AK)?!Zu-wKiyu86A50 z4q3KRsI#r*%&>~jzv(LT`qL`%Gi{hBH_c)12&n@-mF}g@*M$;-u!TA!1)s=zY8{^W z;jMisEG^%nlwlz}iaa#SKYm-74fmMl?iyf#xh*Al1RKr~sL#J{({b zE1jUDez;Ut$j7@S#^HcD6$4c&FP!cVisA-K&%Q80hR z2!|o$%bKX#-%yr7m_M#61v+Lz+z=Rs%E)mAZ7t2>)=XAB94W|brF4Rg8O{^!taPpN zoU<`cS_^Ud^Q3M@>p#Ys-b-c76@wOjJZi}-(&^V}gK#3J$I;~;aTs(!iJitN(bfp5 zpZB5RR2O-bm{#&gZuZt%8bC5KL&m7HAfT0zqYX00IPS(hl+6Q$&7+h$`)H{xXcRy% z&r~Yyg!IMig~doP@HjL^ou)uD-lcqW>{ylt#~8xo2*wTfExbO{JSZM|I771OI&;3H z)S*TvD4F%9S?4O|7;P`gSGOh?FpFXuqDx{+6)g>-0XVMT!nq*b(Nh|&-p}3Vp&vP` z@5MR*bm~oTrfGk5Y6Grb-KgkLzM;sIh{_&|Qh3kc-_bIU6z)B|)l zt&t$GFyvUV+K9{)bEqd6eaIn|j^nY^$$HF?e_{u++sL+(3bl1AiL0g44!N47aeC^T zFE|jCmA8m3#8Zn@{;A@iiONG18`qk`hO$%xsU}B(6?=QbSbuu~M*?@E=O|c=W8s6I zN;7Xl&D}x`h{&rzg3x~B#%4W(Wb6mm%jEbnq=O-h%gB#Dg^nT3u*OA|#ayU3@U z&yOiYB~;?&d)0asX+o?GmqylyWzE&=Zcf^MGrdJgOM{CLzNPJ7)CkGqgjRUWK#Ryr zS%nvKq`6CERv9}^Gi26Tjtn3+Ei5d2tto6;krJh&6By3d0 zHWLaZ{q7)SP+0Epqh|I4ohk`219O#(M{|6Mj+?}W1Nb6#4i$Q?lP+&rUPQe&Gf;elf*M%R%5D}$N&yKj7^2jwFZmiJM zGAjt_SWKHBU%g}J7##bgJUCWN_8KCUm@!)}lg8Mj-0mP{Wia1?}ITmaF%hUpfecD&$FFAxMvS zCR96!70%0cdA6m5MZHxTwEP-H6$kE<`jSv49m1hxWgi6tA>Ai6E}D>GR*uNdK0r?T zgkf11@{;x4YzqqnJN?oFb{sb*4sJ#r$b67-rWrZiBdAu2$nrsRyXjJJRlPjX>^X{~ zA~TB{ZBQu6jnZgj7CWqE#5tipIs|EB2FSg?8z&6b4k(Md0n{&KWN;}lESS=PLibsen>*7MsBR|0pywF?fmR(+0z%=_5 z9vKqSqFZPAAWGPjmHzHRG!J(N~jLLzN_C=cc0G__Xy-3B9F=^3uQuacw|g;iSPhP z9<^i5%FDmBkdBMW_?&u}M%gD6?*9)f%>2Hr)wqXM2rC@+X-W}_y){5Og zi?mhVKeSlYCW-nuI|szf@52)+3(DBkmvS(jyA)eF&VM`e0(i{<3*6 zG4P5YngD7*{wz;`HD7?JN0ru#%qju2OjNS8?vX=(tcqi^C%YYX1|$RI`NteQ>d{k^ zRfq<*;Dfx()=D8G7=vrC6>X>Ihd4pOnV{995Uf+qF6kuNA!T0E?&9O%@*Bnp50QAL zdGkPk=YxQj$0!BU01TL(Wf;6qK*mhm+mA^#lnMO_<~5;(XvGEYgmxY`6n^!^#J~eF z;K$1IOEDz20!u;kK%S8OU>O#x{BSYbmGK|3*CTLCxMJHJaImB+c{>9nX^zVZbounQ z;W0Uc@>UbKget>AOokuoE4OndbU!QvBf(Dkz(0qLKgyfRTyg`zPlBHD>|h0T&A~E! zHBo4&jq#TDR2CZ&$94#CrMBVLjwIgY#mX+sqqX<&#&yzHh}Xs9phmQ0dACd)GD4VZ z$dc-$4B$$6Xe4tz4=R04xt}5984a~qIZOe$uu~D+{(KfBvWQ?z(IVkf^EC+rIfmo* zm*d$wzDKGCnq&3AXXkoltmzE1q{M;U3!pr|M7%^}Y6+m;k_CBM2pc9zBAqLPBTA7U zv<Y8Zk`qF09W@m!THc~+UWkYiWm0Y}kp z`E;5uWv^etamZenHKoHnm$@7kQk=qhK2((Y%8Lkt2ghcR#avtJYz6HVf=Pi6wN8&T zNz{hA6bHJrtY$9N9@BkWCc@%WUG48biKaGb?0aA z6IeZ+0)MhhoGCdN?h24`LaGH(+UNYoQ@obLy>+1ZZ!RAiL5fjxdg2lVc3a@BD25Pb z@)$5!Um=4h#SPr)j*6D7DW2+;*9fIYgTa$`i6pLKnEO$0^ijyoLUAg6E95~1^CdFr zP0!hI2$EV4W*d}g)d5d2#5ZW{ibbwktZ$QUTHs=b$d0E5vbJ|gtKuvZyXR|CAf*2ZBoq2BAPqEZ8KVH2&Gt8w^_^>I zPrtM>>%r4tVOS}$wp@N~-i=u5=$R*J=zxbM?R)?;VU^RXy{P@|2$?>YNMfrHi4DBW zaF((2k+Qn7dgs}*ATE6aN)PL-tI2bMJb3YpYg@V(Ry%gU>r-l7JX3y+=U7eP+md5Y z3K0sU^i;*?XG)(Tjfuju-OS`s4i7a zhTtUSH4I;bJW0w&&#fKeKh zSFnuNtA5OV`*@2eiePD$o z6*fD+#xpWhS$pj!Wf#dS%AXU8(*HZxD_c7+d;<|z5&QXmJk7SY&<=J`dSe|G9?p!! z`gRoTif#>Cd0lEE1uNrfhaMvCs$`Y~hD;}4mNJwKq{YL-dbQ+70Tx5Lv`)&7C)V0B zxM@QPk(Vjn+k=i%PZS{JG_YQ45;lm>L7{P!OhghEhw20Cb*`<*6)dh4ZnA6>tHavU zU@SjuiATv)7xIV#0B}PCmyb&`&=TvgTCm1?d_|sqAu0%8$ZJipywF6)_Zs)0xfe-U zd|Z7NEK9a-9e*R(3DGmXvHqfBb`l^4GD{o8#`5s~zJcP~Egufy{)7jno}t2n7(f+a zyYhgGlmU?}Rhx8!^x{?#ehvodB82yWHBlQMS5H@vA5?*PN`o-7yAfnUw0H!=@fQa& zb3MwUdwGk(T!kh*&t4HvV?QO#0O9Osm6#ZBWQGk)%w)6Gv?Lb;%TEqr6Hpt_Wze4F~zF3=x32{*-L&7@M7E`5YI+`!I(L9x4;6+!5Ae7Nen9 z4DO6l(6oboxzeCcYH{+u{BVvFMO@&MlN@aEP zTrbCF?nYZ;8W(QJExDoGAIZ=lv@Cc>M>q#(=X|U+%o1mZP)1^zmJkeHx6_6O%ZP@` zAWD^^L)}P4AktE*E6ee`*&aG#N|#YG0_cvtPnXvG<U*#3^Bwu@nsZH#?GJ= z`ps)Fv-4W;6@-vykrBr>7l8rD;2`5E?h#^_xR1bRQB0p| znP8<(b{KQ(T*P9sLuF4^&2NDT1;M2dFX8#>NaACwNsp38@7dChbOg)L2c`L}-2oT3 z*-bmKX3lu4(lUAC0?W*lvowesBzDD}D0}L-`I0?a12?DzH-SR^Kj3olriW1zfO zApRhE&0>VTz0Opzvi^A5%961yMsWj&Q(3DaPv88AZJDj@3WR$lIn5vx@B`7nZsj@| ztJz+#s~(c{-Kv(>IjFAoq<1Y4h&!HW*}#Vb>_h zeEjHG3*|?;S!2Uk)Rcx_JKiuPK#=Qd_ussf@qQet@Z=gx^G5;_Vv`c^k)7UAC&h`N z0*3{@G(-&{#b63joH^h!1HP}h)34hJN8Rb3T8Ummn$M-siy^c0*jJz@=}8#jfjm*U zXHY?#Q4m@RIdEwEl_rIx!wYrF;c2Hm0wM#R`thkbD=};$e#LzH^mrWrS*7@mHjs(y znq8fj-Y#Qe`VM(Zog|1&Ny3cyG&qNumae>QEopYwNlPEVj7674Waq7&?=(xOHeu4Qsw|$d)~hJL@&WE&mb8I_b$UwjQeF=9 zJp5k8l9#lz$Wgw*F+_K%eAw(LU~8Bov5ja1d&}L1o14wxxUKOJp`}}q*v9Q|Vg`o} z@g(}#wwU}>PbF(B)LKvxdJjepC-r)&bvq#D3O$KtNv^tR@w{`iT3^M25;An7j9Dja zd|$mOLpDXHY9<9g%o~`F@B}gR1fe3Hw)%R9fsFfRvMunG0Fd{UeE;)QO0k2_CAQO~ zK4qLuZ+hvhW@Af$%Ql3D9EwWxk)iG7vZmtb>sgi1EAld|LxX^>!ktLwDMJYtXkj5u zLyJXa*h&hMi()NBWg=WM1bKqaVG7D9MA@tohcMrNb%Ff%IQf9TFn)IeD+9c3+(RT_ zX`N`l7Eoc&3rcuh*^MHSSWc%WteBj!qwYI1$vRq8*#14;e?Yi7KAa3{qJ029-8{Le z>l*iR2wePdiit^$>=~HBO=N&WyZ~R`16{hp1C9{9uHh*HSKgCM;EKjjY`9a9O(Acf zKA&phK8es`Ywbibd3e|k=CqBV|DIeG8x12ZH{4w z@~tZk@*pb)?M>1a!)=Z>4M`%LM;>rh6`I_ze|Lg1Ar#nH~e zH5N7sb!K-c=%7Q}Yp9_71l@K%nmS|};>yhz9S(wF8RVN0UdE!Ks%TCLUw(Ht!jKFrYw%oL{9jx$FrWtP?Kpk-O@+^-mKPl9l9 zqhd$~Vnahjx$R`7RJK@FpfytjZjwPKq)ZlXYz$Tj#*Jrq>T<=xg^v1#z6`v=ujGcB zz$^{U%N~WmSXEx9n>7drfPP9z3UG}0)&_FELf`;%JQ%zoCb|j6E=nOndqF{j$llr6 z-D-$5QQz1R!Yl(3X%UECY7sV|n1k>as}9~%{F(V8U3I`@Rj(_Ao_;&Um`_MSn{Q&{X0i-k}Rv0T1WdeN|4hMYU%f4m5|%>sw_6j0yyG!=$8aWouXzJqVBBUz{aHZom0F@-*==wvSXrgp+R%QO_;K zqPZ0?y00esELRHD-BdZ0lH#%0VR$OvTj#(W5yDVO`6F4)82>0-Fc`&!CxF1#n-vaB zz(uyRV`uo+@|y@lj3DhidZ4jk##Jz=Ny8Go5@&YLZ5~b{&jXE^TC#lCmZ2@zlje17 zN>3$Di0qQ!CArMWeUNi>Og_fvJb-QplAcZ6v8HSH;14cF49TXBNga)FjN}dpw<1l=+c9_E>*Rs6YS1TnC)t43C80PAq+AUYk)mg4Jjwh z1J8I0rN!`6-UW<_T-&Wxwv=c`vaHG1AiMBMjHGGH-)M4irYwq3Az{?OM|KGs`k+`C z!~j;+9N|Sj+U(_uV9=bMgPX#f*oX{%ZmznYxVCBZb7hWe8VVFhe!3feB<-Sv;zpoh z%=)Ah$sJ<+iLtoOvK5ld#4jFWjG@YFB=B;WtOK^*O~BTkYjR-yii*pe%IX%YSY>x( zv747Df64h)zKECd#?RRkW4_d|XP4$W+>D3%^3rG=T$?*g_qjdjQc3uj%%DOr9(A1q0lS^u=mJ2K|NkqR$5li>=Qx zS-c*UoND&&e4!++=F+h;OMJUfC{BLE^?85P+VK%}Nl*m0g5-<%P8a!xgxaeZ7J(GF zH3xqb6Rg4``3RJGY#SoEK5UQ~VN~6wiCYkkRzu-=LMnfMZ6gfC3AD%+hfeZx6d?8~yvFS&~8!W-`91k}AVGYi~ z*e(tV=zE!5>pJ#Ul*7zm;bwBMTiaEj_W|4~yYc`j-J)@nWQwoLpu3F9)RBAGYlyP) zQhTXec4f^)v?jNvG{{$1;t#@&sZp?T^09;W!;asz`yIm}WDxnbE;Fi=k>p7aHkjWC z8G3;JytQED%&48$@szFc-<_Uvkezpuwo?4U3?+paUkGLIK4@}6&V3O=~rJRnPzQx=vTz{YH3cESX@`rC%+YY@)AQ~Kfi$A*a1kq&OK@AF26y>NV4RzMkL z*;gBbd1RRObOle5KAg^a7Eq`y%siNnEqgW9AV2*!4sLSyhjFf24!cuPIK2&~K7J)u zJ5FA_^8llXsC#g6?XcxM(TVuPL3GP*jLLJm|_Ov_56w;IUrn%xW<1muD}q^XMlOUrN$m+V?{ zlz)&j;CT(JNvR=}94nFlKb9nqeXMz1(SgxWg6Gy!iRH?@zE> ztfO$P@GQ;%J$V9xxAH_14yNU`g=&lBxg1EPk8oAcJSKmkN>U)51KQhVxU6>`{5Q6K zfYFuCU{@YE+RS^A&`{cR>V}EIlK=$10&<-%qei-dA;4Q^azM~BhOTo9=%lzIuBdp_ zL9`Q>q8m?W9p4`_w9wfnO)1Rc_Fv>V(jqyMN&IBUc@*x zHwNG%=@N@`4^e+nLw;@vw>Ne63Gh3)?9h4LA`hY|;&$tJwQ)9gux@KhFDNvT+y^pg zrE@Pl;+B8hf)If7=*1NtP00;Y3upQ3NiOpM0hvq@{X93Z%-g1*mUIk?P!UtY**Im8 zd9lJyLu1WAu|{!i*v#Jpgm~nMf&D{GWAufYqPW<5wv$S}Yv?^Yb#6lr?3&X>FxG94NMkLM!Wxmw7$U-Off@7#Xt_T50 zPKxxrXJJ;Vqct#_$$a&vU`7hV!j670_tZpx@MeMzl+6m-cVNnot&d0B!eZjkZo7sc zm4aEyF5t*G*K+B6h(me!sWhmls2O5c3Qd6)_lc)Bb<3*57@~WU8KK6Y3?BO+mI`-L zB>VP)F2_scznB?Iou{yu(h(m$WtKi6X=TFr>LcCqqg3srp<6CLxM8=aMq;*9Hqml1 zuVNMR94yLxy#5%QIbLhNTxFXO81we#1f(pL&#U1%IGUXeXC3Z&*8Y-$ z!b}D3i!bRCBGQ?$0z5j5g9q|LDAG$yL*GEeGrcL@!E~N*{xLQg&+j@eMCGt^PnqY{ zAV42i>!>B(cIR!Q!z>&S6{66VYvbo-tl={PZ#>+kXQycQDaHWGBY&0#M;hrJ@AMV2 z`&u!C9t;7n?>tsz97mlp!tKVkFgTlblk1q>$TPU0KHU`V&x}AVS5h_O>pQ|3=ai_Pt52V8tiu7A{zNn~E;;^#fCFpQ{Ou8{1_@E3SKs@VyL zaa`U&jvY*frG%TB+X896s4R=(-syeS?JU+bylxwah=z&taBC0SMw7ic!N z2#bV4J=UbB+<451NArDHo)yRZ7#a*YT;Gt%EXKRF2y<;%CTP@5_M$~X34UXEUT>R> z5yH;)73RlTeH9_+0EJ$d$K5~OyEP;s!efiTq366H{A6M^IQj~i3RbBb8I{9{&EyO6 z6!k@IH*3i?jB_~Gb?1CUfK(*Fjo&1s#h}U}nTJy5wA4wi4;sQyR~GeFvUm^bn(`jX zya0ql99gG+Y~hk;2g-#_xjBL_zGvF^_tb8K8*v!c8wMZO+-8pTXmd+#Dlq^ScFi_e zVqH&@<@K;he}mwk`QZr3<>~|;Z>X2?jjssB(2S}duajCrb3wkOgR*xh4%B050~Z## z*)dtM_E;cNW0A{Yeb8QgPuL|^0cUR=NAQHP#0;g!CB=R?K++MxMNYH!(tRN@i103c zMZ$4Gd8ex*pY%IeJfLNv1$8dBV|nO|@pm+D5D(VI`VH#@AI< zNU7n;RLcvsysyiPhrC=THzEYQ!sI*&$CGIx$Q{BHVa+%!y7SyU3!4pM^ypiD1jWO0 zTgfxNPnN+!jq78{7!#9l(N5!87US}my_gl2!Uu&`ZEj9fBTeY7C=hVO7jk?N zZc{hB=VoS%8dipQaBmZ0+z(G%rZcP*^i_58W$nHd=(M*G+B5GemIAb#5kuZ>UTuUc z19L}Yu|Ydqc@7C<%|Evp=$3fzlJ0vaOx}m$8!GlEsa=5R?9eS6jGAkGwaNG~hzo=O znk_hcera<#-&+qCe^4j`$0|gq@VE|k`N|*;l0Axgg;uEibV3uT4vo5m3l*-OG7uGO z)&n0aELx&yaH&#>54HwVMn|BE)Y#j&NSojq1U>G0ZmAMN>vnAS5;nWIB)rCJ@M9$J z+7kTIu7$=jUu9EZcW4YC54yqPu~yVbD&4)^3zohaiEuG{sneIsOMsn-if2s@{gmrG z$8H6R;U@g>X!D&?P+T$SD(qloB#MCqE&82Gp|21b=;+oV-*YmcSiH-8Zh5?#9ukv(A&H#pOMYAsQCf%)iF+`$M^xKp^ zvllzOVoZ4?H+maDJFX*iM~H}_r@KOkVx_~~c&muww7XninQb6qi3;0=fWh}iLN4ps z@|>D^Zc|#Tw4BwdDVf8c-+jz;8uC{(ufSSHF%$w|7}iRSg|f9X=VC3iv5qZ?w)ij= zfp`)tdHdAUj8kRvfbhnbpdAawF3Wq&Nh@xwoRzuLA74uSvJMFLnNy2NB6 ztnjJ;bM!A`e&Exj2vN+eVA$xF+kj%u%(h9INPl~8bDnRm9ZrGi{6-?1x3mYZ$6MKl;L@xeV5r3Jy3Wq5f9 z7D^0XrPr3ZcQD5QvYYf3k1q~T^&CYJ=1|ZAo(e*4We_D1>s*kqNxh~1!V^r#LNR0% z^@N)Okdp85AVR}lsUUt{8C338C0fqGu`10W$i2!$EK9eiVwA7cSDsw4D=WF(D74eV z)#cTdLGB=K?(BAC4FOludIQvuya{3D0>M*7G2f_rQMe~>Uc#ktoz8`oU{o7ne1=tw zXaz5Y07n9iu}lLqy|o4paxCpgVHa*4u;U-6$a$blLMH8lw# zM$i3+3F-cvcM1k**?wIliBoMoudMJ+t9UM9vp%ZSl>~P6SOrj8VEkgS1{(0Z(~Bz! zAuDyB1K{>~06VwR#>Nz$*kJ|`+pqA#144B~&m-o;)~f-bquWH2!-Au}Q+{+*(X8lL z1ACf;i~@U+QeJE8S%-1uI3lN@pT5c`_~0B=m@XG^-<8)3V#D@O89SK=bMPPJWFc)V znH)ahHh@OQqL%?sa|Ma#)(~;n7yZ=|6pUG|OLX>Ees60R`Qj&K>}aY6!}FGQixBc7 zt!u@)M;RWJoEv-i@}s;8@NGV`8F9!Ex9j}hBh%PnLCBTRvQh)v9HmYo05jco z`$1kO+!wBZvTPsrLXV4H(CchAg9qh^u|g4aq;V0T0IzIyxOvaHH2NUCXog3%rFpzO zI%ZtI!0Wp52jgN0*~O$1TdoiSz^{wL$#qs72VoFm17SdW%-eD)t;!=G0Ug07vDckh zc!fTO2uXf2Q)8JBkb78pl6`5d`qG?xYbblsdSg}TNavE5Ml^_F6{x;SF`}ZP@U}G% zC(ho1Czr!h2g@8XSr}gj$$2r9B4b^Vt%^OBAY+A%)Psyk=(tD{k)eS@ombk7^CqYL z4t3V~{wgtw6eohC2vpf8^sv8ya<#jKR>{uZ+$93%w?+_zg=Q5`T5axeM^%j0+o^tU z*%O{VN6fBeTgf>|1}&!ETGrmz!C(|jLxi$05R{EfAqu#TaM}@Oj~686&qM2q2pt<~ntzqymY7|5_*E)W?j8?Bh+UVW+n$E2q+J;D@ zSdJ*Hloutt=&QUnC{TDA%NZ`n3;a+9)>2Ub!ro!3$B(gRd9x7iT8#CI7P!%hl~CM# zVVBehY&b!3^X7WS1K+W+1<%OcCQx$#7qSI{(6ALnh`>td6hU^()dbQ#sv&(ytcVpzxIU?qd5|s9|a0;-k`xxxKdX zcmsdR$6^oj4uM6rLzX-WW@85{i)#3GEQe^UA_RJTA`vrGXon?E8fJRZP_YGAsJ>St zefzncfjU;?YJ?LSWaWU~{git&=50JBJ|ta#9uCYB<+y9tQ)V87tu=2KQZJAMNQx8! zwyEKAJz7-ZA#A(EXsp;mOtIieyX39e8xT@NUp9e1<;QxDk1JV*SH(TQJkJiBLIvS@ z9Y34JK3Uf@WLy*DHVXUIM>x0Ev*2D(mo_Yq3SC&=B)}eV5n??T*0&BflNNo_v=`@G zBM${%nserMa0nBFac2!LmBYA?H@gxZ;Hl4N2P9BvT}Xg>QjR$g0aP(Yc*B}uvrn}$ zxGdE$r=gCc?r8m-hs(G#AV^Qqk$Ab<%8(2xoV?;^;uk4z9;8S)`aq5zBP6SD0YM}I z!E3mlV_rMq;VBbS4}wf}wPsOP7G2!S>wC?nPDO%hLoSeuCuZ#}H(HkCB3~J6FIL<7 z!;9>1^%dfcag3Me7o|?V>5{Uz#<5e6PBaiPN4QkXVgly#$s>X4E^%+qMo;kPKu?U_ z;-;&K50&tOQd+-W!qXlDDxXd$OUA$>=`-i#I4-dtD=X!IOBrHcT z)|K>~JCiZXC%AM%&#iU6bIgM{M#V@vo|a7HbAi`mDdW{g)7w`tmandJV@|U2-KBN% zIIm-wWJY<6_oB+8*T@`R%ImOTj{Mpm-J1Fh!g}Z}lHX;ZUe8<5Dn zv4L4Pq{sh69!l)0pY9A9WzT)eqj{A9w zbO1c)*_8DBt{3E7S|%2}m77-xkko=rjS^=SyP;U_#B{M(^aK+UTZUYZytKz~8+u}) zWCEyw$ll2DFmRIFksEo6tn2A1h>X!B0pp!a0L4Dp&0u=fS6?L)#@fO)OUi61#kT-l zctT2OPq+_qI`>468TekC8Od&$=ue6ums7%6HL6753UX#bsm!p(Cr&56))y^6}CY+s`U8SC~$yOi`Z@OgtEO%;?* zm4mTTJiw(&dhFU>pj3%%N^+6dmy2AfwHXnzeo(7CljU)h(wb(s!Hcs03N?EkJki(~ zz$E9(=lTHOi@a|vYS)1QZg;j4a^8D&E5E+n3?xXUuMLDy#(w8)Vy3P{c+meDb3OEI zYlBceH$H-V@f(FYdYY9Rlr$SRUaSTFp6dJsd5WFzoEp!1A(2_!4S~dMsCy(y+XMF^ zPL4jfWEX7V;9{Ndj{shGP*0)t!MU3Uw0eFBsWjYIIm{55mA;)sx!1ycbG`n9` zDpsF5)~lhgrLDlvrO$|=7OWJ@B}aCCrp)RPSeLY8GRrRb z+Gil9Al*F&s*DImQCNPlZS&dBn$Kfmpr;>jZ<-P(qlc;Y$x2yYj90T23_}n~sV66a zhA8_Im2!JoxHe5l3MYdkj=zimFIHt_VD;U7syD3Ku7i-|6xdy!LrQ6Gu$|<{Y*atR z_1XX*2#T#rNQ~0l#HICy9eW{n*lpe-S9s{n!hFFogfn~Udb|a|4_5(dZv?f}o&xRh zDtQx9QEZioYcz-s0h_VV2qEex9}S zdm=Dl2@w(~DwKi>FSZxw@F+m80Y#jWn8`-5^I1{*c@(Y!VsG6_czWy`*#7Cw33lXt z)IBpgJ~BCc)O~$qWNhl*$Wd+W%xkaZAKfz})6)~9v>O?l80IhSMu#WpaAss=YI6Fh z`yH#ZCB6-(uTv9KN44)`lu$K3HKo?m_w4WJ)bKdNc(1XMd-3bU#J!{1uTw7uzBe*v zGp30q0PLSuCDV_LF>TKT_q_G=@PvUiJqZ9?IRF4>a1T#Rj>m=im(fv!i2+9e#8JRl zd>J0UmliZR94aR?fgl(kWl3s2Ji$P|mWk;RD;ph~%6pCsAJskslG?BLl}%1hPR5=Q z>C*`Z<5N^de5S8c6B9?ZFV+9l;68w7mkz0T<5Rd^&%3RnV}^p9sT@P7hNPr)I6cEmW}b zfP#C&KxEUtb^p%nozlqY6l7WZNuOhCe2VJdZa>DxCdYvDckshLB3zRYl_;+EJH5|{ zFdZt#@1?I3_ae1Nx;_KJjHmTYj4{rJhKTU8p`d+yG%Z2E1bQ*V!BT+wyEON!K7LAr z*~U&K+L#=%o>NocxAuD+;IWBGn~J}H_Roi2><*>ses6f}sP=n9@yOU{!1@Hms)tfR z%g?JmLT-#SH9kSVe>pFo5|tY~LWOz`(;{}dH+oe2{l&&?*B{__?f0qB!~`J!!Mp{; zaa8+5`fX!QL+Qfk6qEjuP|5_1Vr|ZhOitee&Y$+tMyJN9`D3y7Fgt6=o&=y%lL03K%eMGB!E}KAl7$#Xp=6HR0PkF{*k0n!4!2uqNpOM$=SNqT9&K(-MmsP;=J) z%ff(@bfW?i@h@Y;>|st3aL7^Zzt%+mMfynOGIfv2-=y+DPSex*K2HtD9 zWDKW!$R}zSkbTvMp;z?&d1yW|0%_O& zikf%w5!jRh&l$~_JZ1%dN3FCag3Grg0u32a1BM_5S`^d?X!-lrZ**i-r1}puU%U6? zFX*Q}eDpw26C*Ylqtfjksmaf%NnALT{);MaOo2z$MS4(4Kn(!U# zG&+873i;7}eROPOdYob3n!QuLQyLpLd*}7h(aC!Vf!g`dczkSJ!fJGywWPKq!(&>= z=)DQ);&U3{?)u7;m1PYhwea@(ofWBh=!f2?(WvatwKSyZh|#fOsNkq}o#OlhxW?}x zbZz)?_+QhEk4h{dlqOAikB*E?ps*t1N}NP zI&}~BQ0e$2?5LjOW8g5f6I0t*fIFly^wIr_biA~@cFvkkYe-*TV5!!_%XKZj@Kbrr3>!r*Xhw=@#e6;V;J4l6zB$Vj_s1;co<75Zqmp!dc8JI z2m2`Yvc-%|jcR!XfYsS{4-mdn6NT*_gJNl@eX?oqVK~;N)xhwqO*Gudy8CVwzr$)) z%WDtUOQRzq@n2mSY-D(p-qwuXBhw@N`X1G5@1*eg%U&JT$`sm1&u{{{IQ+QnK07Ja zvi&n8qgSUWftt{twFmk9BNHQ%eUQVntAf!nHpu%xGCs=mJsF1pGATv5q~0uW>>gUX zwrH?I2io3%pkZ?`Xg}hF#a|nd&6WBFt}%vUL}Zp)ygoWHJSkrBFGiJ=h)%o&oO~W; zg#)dj#sZb!uVPpR5`bB!q*~s5dKb@Td{j(V*iE7N*VEcQ7?*ljxb}sL(g)=XEQ?w@ zl7BcH=01s?4IBLRRgFq4);0u*gKN76zX9KN9EK|B*O?PWXXagXcx!!j~VVi8V#tAh-|2lT{`OwGn4U(>(a!y?HlYVYHO;;ln*jG zIU&8R9gr8nm(elP^skSOOi%b;hyVnP$+i*D9JfKv+;bmie0UT~%_$FOwhdv^toEg* zN*~=f*5zVClDofW5Zyi_8T>~iO0LEl90ZT zDLEjlA6|@1HY|qxQNf}Q7bbVcO3*Jb8$TI~j^TK^K%0Uu9V_F~hQC(5d@G^%-=be{ zu0M4GbIeApjDcbn6M!E#mjhHHV@2NbhOE7anFai?j|=kTFd9KfivJET9vdDOL;X&E z*#`}@gTNDH%gDV+h`5K{g{+9VF)2E&PWD4VCPrij0TkE=R~RJphz?ms+OhF_vSUo* z0V7r#;~DcaezAiDwH7fZk}B*A()=g2h@T7V8aG??seVNgn3NhVj%5xJ@>??VUsPv( zgythiW?(%dAp<@Cd>9tM`UY`8;Y*PEuV@f`6i^}E$wG$3w*eA{w5>pKIxPt0(D{J6 z|1O_NyT_WsE=W{4`Cto}(iwr!AMM0>ErQ1H%kMEc*m&T-R4WLN~r1ocg8RF|iE@QAg z6!}ZuAF*sg7nOrmSo^bH3L@d@KgSRIh$zDgVzPfn#pxq1c6>rXl;XxltP(%6)s90i z`XccQI&A&2z1}o&Gcl2W2PUTfi<(Ct-PeU@vu5lI3p{6r)7_O(Ry;fc@X~OTgt5A> z&z2Cs+SxJoLR)+qXV`vEj}8;PsQsrJlGf9}dwR?q{r=$?=R%m_&est)%z?0dRiVg0 z0#yp)^e8gbAQ&H(i}yO75I&uOGBqr(?XPP|`slvla9gYKDT6CjdJFHZ@qlqy)}?jS zFE_%+##xZf&led>e>31}divF{Y8z}U+WrrML8tt_=f$E6U#=wV|0*D<6nXwV0g*nsZfB7$nT9~mX+7Vt9d2$~*M6pn@h z_w_ddxM0M-zdptQCI;*a>gG)~IRlNELp{c}$iFf~nB|4h%)l&e0$pjwm~ZXG5s%+# zxCt4Rz)onxI*!5d1`5JQFuy)ViB|vm*vQ1NuCx#I`8g~*iz$Tcy2dpX)AE6Lf;TRD-#2rhMoj*JViJ$aw zROQZ5Q-~Mm0t0z-j9u zYY4kkr zGeci!|C4H;?}*KfSK}ghdVGWx)c&gLB9XMQfmoWZK@LiU18E;DqW8WcBR?#a$S(?( z88KVHMWRCvzheXGQv2Pu6f<@po&QQe^o{5YBe>Yvw~1B>6Vtd7HZTU2xIpY;&Qa}82sft}A1==a97PCAW&#ERce(&YhI%0(fgRBz6T#-z(c8ak@MAYq z2$70f2$+}|Arogp7RzabEMOYq_-QtR%sym-H;{0c5)Ckde5=2tK}~GQT=Oqb6v0=E z@yLKMd%(ZgNGgHl|Ef@=4|)j~0cOP+Yk$p)C0Kka$rolc6ADblrGrUhiNF^|w}5ea zYMLfqsD1V3?5lyO4W>lH2@?zlG=D?T^nM&eyden08Jfibh_wGs{fr1qZ<-V!z{{FM zVCjqR3|a$}{f}B)|E4;l$m(EFnw=?BpX4iL2qZz3dRR?7}Tl@N)%CoS9G zN7gck4q5s&THG5`I4F>pEe}131gyRF9iU$y)B%}P zC&Sxus2A7{2xhvAxQ(c_RR2O#Mmg^TP%L=Q7kxC?*5&dzg9vHmJF-eSbuzA#P2r#u zU$VJ~hj|sm3t@>6Fgu+P7|baUqbCA}p{6znPHRjP9eBJeh~6xZb2^XtVofk(MLqAu z#abE#42KeT!tb_v#+E4_7!9RsYWB2;I^MjWm4r=i zDwcIbv110Ic7V>O-L7%}%!U`^8;bM=5&B~i5k`E;{fl1EG+%1p&}Q|1MBF1fzhAYl z_+UhhkJx=-B8X^6ByCjWaRn_e;0ukV4}pUN=N%@-C8x{^MRc&p{(Y0*f2@qYN!~?# zL~R5ncQlngmNSmLyr_8n=RMVs&*qt9zfyc1R zcOZRO+LfP#g9(}`0$h;6k7#y%Xmi*b7UO=(gz)ctqeKz|9WgAM$3ze-)K2OTee}nc z$sY;zHx^fQ2Eh*Z+iW0)DQ0CjLJb(t0^tA7hcTU_6s-U^28lrtPzb)?t|9edftqP3 zjhMK~^r3ZPr~{ef3j%QBAn3^uXb&WC5Lzxzr7fJ+@NgNb>YN3AX%vJ8n*kVoex)PD zHLrv^zl|F;TR&M#2ly&vn9vNF!LI(CV1C7i4ApB^n^ zyJ|WNWz0g~G==7Q8)x16RBVzsW-uQB-j*qSM*FaJnjHj=m&g$k_@^-*9FMdY1CT=n zogG`L4F!m9M6pl>1^=k_rEe`v)!$jj>}{2JR#KTMUERoAFg)su5xe|P0ERwB1si{W zl|K^y`U4DqS}>de4=#D-I8yp=sk9#sXCT=mam69P05bxj>12sTMuuI@I@EUwA^uSs9;ySJ+D* z-Ba_Do+syk+!Bv`mjldWf9?dcL z{nQ-oYX7IfGs_{G`plww`7)03qc zX`k~dO&?U9n#I1XT`>6OiE-5~>g&mQ+Fr84840FSGja<~mRZW1l&YIT9M}ANSrX>d zyomDDyfi1@StH+pLom~RhLzQB`-l?W3_xYc3g)pX1j>vYs`o=1u>662EyHBBukqDB z)DeKS0ksdkUOd1K2_I!0kbz;rGb>*bj9R%gJoslbnP=W4%d8!qzdbuT28m4YAJjFh zXIs2znyq5pY$oJVn=J=J*Okvj~ye zycN$#iUO%XoYO{p?8Qjt+C%>;!N(>UM7|WzS6i~mIVzWpJ`kbHwH5CnMg*~p39$jo z#5n&=3K#Px)>)_4Fe9x7>OstBVKioas;@$h<4~J!C<_zKF?j9!)#l_JAf23>HXI`; zYyXQ#UOXaDXJk|ZgiRr@XTzqLC4N@>KSUOf`CYrihwZf_^{H8%?@_p8LMr!)xEPM3Ke$PrW{eV}=0u}G4ChN`%Qec4`CiG{x-#@F8-06~ zwV!pUyQk+(clC^7^Trn7VjlUOe)hDqAFLEC{hU^sK7_(KxW|`pywA5N>7KZ6c&Ys! z2Qf75`w3&q_2-}F-Yy_`|7_%uP(AdV))zs*FAwEJsFhn z2~@>NEitfg_XHZ{1mf@n()`2>^VI$|VC$Yhww>U*nG=ZcKdu$o#~;?WKPK3_Cy)Yv zBL4Kj3csyQ&6;bt+8G}YOyg)sdYk!E({DTHo;GNUh`7HT2nwq3`%oJcxy_Rc#RD&B{eHpK6wn<0F6z^K$Ww*Zu|?S=L&%$z90$-~gVl(seA z+F>#DgbnqQ@WXb}K7512epqdw744#LfZ;v|&zItu@D4uozpiCQAdGAS^%z7w#Fy`} zW5{r*E=CB}t*}#8Ye0C7{kAz1W9XLyYnACEtV_R_eQd+6k(aTnMzEDS(dtvA42%Av z^)aF_aBZ)`tiH*PsN(}rq8^;8mrPz5VjN#igg%#%h31c2;03imNniW$8eg*&s-e|D zNBF3*uhCNA&Oc*NN1>61@czjB8rp|*DYlF!uIwoVbn9@*$}L z#H6%*9&7KN3j1%1ul;EQyD+%{W6N;3!o-f*fMEXQv-`lde7-tP!}`2Yz=z24VuK%|e*JTQ4enzM#s zq<6f3Q|q$c4!bu=3-@uBYibtJkk+YIj%owZC2K;IqfDdrpv5~_t2j$d)NWJwH|?wm zw*np8Zae-GFbRDwMk00tWjK8pI@5s5%Z%${eRm-KkM$HrwH?EJ5#*r1!rs}S zaSeqP$D%l?Z?=`erti}@u$NcF`p`8a_x1ppn4tP9uvf5pE{62?k@eckpmmF1-Mvps9bwYj-n@Jy`X_&6BV?MSj48*V{eGMb~ zC4j7_lcbvF-}J)~5QivC;uINS@im5h)X3T`@o3mB4dviO%2A264;x@Vyd=)%e`|j> zUwY)-(86J`A3U#i;4hcpqKXx6d|7HX4!FdZ3s_daUb@Q_DE6+O=ekzolhVpE8UEUk z^wIswGVh%GocEP~Qd<6;nEgU$%WiYhkGE$k^=S>@){Nk+&!5&@!+U9AdPi)e*H|>6< z2sS4xT6*^@Trtw9KC9?PIsi{&+BZxA?mSFax@|K1Ebh@)c)NPGQ_XZ4?L+dSY@qkK zv}|*a8{2p}(fSMSYfpn#g(vMeW3eQ)~Z{&{Lu=y zCZw^$)jlt1v9iDwmAnggZ!6PE=DEy^YixK$EALS9E5}xL?Um1qyr+uGSePwe$_&S6 zv(4r+?ke-qghuWMDupY)+MhNXpRQN9r74cSj5;U*##k z-dx$|RS!T*V%$01v%-y_^=G^!7gC`5t+`5ryFBR$nP_MC**LIN=5cPr(pUR1vg{cD z>)ORTx~PfUO+H-!33~I#UGBuu>lu6n$7j3wEvtRxf1imlHrtAga0c-8Q zQBC^jmde~d53IV9m`&r2MR$3V3Kw5<{~$fUpAFc(%1fLMcu;PI7k}$DO6)f8QP_sa z{)T3G%U`BJhqLyj1hR|sP><$p+2B_2r#|KK~(BDJZWoYAU)o>wpV$<>#&*m5t(V~Xdli&YrNfZ z*D3AcGDmVt)%uI9v!~mMoXC{^ooyVu2X_I zHtW^x?VOvqVC&0%G19&G4PB(k%h%U+A1>E`!pNKuYG8c;#`23i z@2Si_Qdx1@WnTD*a6`a=z4Z=PVnv~B`=*cXg|u(HVrUDY0(OM-YJB4egvv|Hf&fF> zary8L7XTtXW_PQb*$yK2;UWj1Zvo1`*8?N3_vH;_StH~1brSv}+Z)A&g9q{E{x+9V zm$Xn@#VJNw);0Y_j1{{f*}XK6LJu$Zc%fIJ7=Ycg_u1&uR)_mbQJsjDu9G77 z;7Yw9W-e)s29J@D$khn2`_5wJ%eV`g@QNDRhgx^9Jk+zx+ynPigq0*EST$UIb+yH7 z3sA|MFxVRNToaPt`JRRBIrPIW@v1ZumUrlpNjn$jlrO1s=v%PV#qzY4)EPMgO4eUINh=j^M?NCIKu zc7XHUz4y1j_x|?dUe3Nu#BYW<`bK56$OH+d@dBc9J>+c(oJI!T9X4qjs?k-Pa63QgQ8??va<9X1>$YNUFC?u{b zI0839?ZP@^z|)+p)8LyeLLL9}e3t8><~F=u8t=%%yO?$Pm^nCIxVzko`1fof3xHx? zHzzd)SzB}j-;MX}`r5SeZc+G_;zJET4=>>>4`Bd{rE$O9BLh9dE!*(QeK=AJ#w%SI zlkBL>7jp7Qmvb44SCV6qilvH^xM#eKtEe!APYjJ=%96J>?!f;wCw*G;V*-XiOyHIf znU1l_!?iv-qkmnz6CMy^5Z8I&ZgsV|ECb&sGU!7?4ol7<+~r<~Inc(f5}+vK0g<_yw9MF|S6k1$Zp<<`giP>>=+XP-c zjYT<@q?qNlj^b7yz1_wcK zkt}3db`N(CAD7jb(!#wTAH>K;Mj=(0Ve4_EGTWM5z6-Bi$IVoe*jK>vnA|W>w?3>J z5!|YAd~A5gH-tO)Vas@6aPovqkk|*|mEO3$aRc~;<*LY5+vytIPa(?`;O31wRcRNY zFQX1=D_(9qE^krP1p%-zXKV5<;!IwK;S{jYj+Huz?;)0*wK_9A4(8+2P1NEX%wzJh2dm%`$58R-9pP z*j66tYw6OBpDrX?wjRZju?!}K%-$(l$V1+jjyI=Eocdl9x*WIUEeobD!MU*$dljS{ zv4X6A85JOkUF~+pQF*$0p@k8F_p86|x3_wD({Qx$+*ooOBfTMPPT!s67Bzjdf3q%H5ojWp)Z7 zG2WS@5;FLO28hbVxKy_nAt$FO92J!w>3dyJ2`gc|NWU;GE|(SP#If?AL|J(PNfCED zVz)Sow>uAFf!nxmqDOYBdvMRA?8Y$?24G%Mr*cfFH!ugFF}!vkZbdFyA|n=NL}JNg z!vB6OIiP%E1jBQxQV|;Sb`P8N#Ll)J9D!ICJcGcf$RllTlN+E0anm$HUY1v2Sy;YR zP6*mNvMAXu_Zbb?xc%g7|G1=oY4fh(@jki!tKP`LHE(0Orbq56Ps-9%ZpAaDuFI&` z>@~3+%tdk`w^ces4fSOcu6?K+8_4CVVw5z5tq1fgriklukX~$_Bmq->gSSIOV69!S{!pha?(owlz zI?mfVfq)fKaNYd8y(=G*_J&;Q0^_b>Sr*ysu>uE0$P>p43v3b2HhuWH83@?G$E%qK zC1x=AaEU6zJ6*nK(1!XB*>a<6;q30mmL$T&7ENj>#t1$}b6l#oPNZo!Vfa+S+0Rry&c*&T`KvUfHah49SL%i4X%q z} z6l*5TV(jZ05m)gdRiA`ev&>)lyCPt)ca;CIX2-js2Q(vULhPt45d5XPa69NRBZYZM zZ?wRIPzTpFVJ_S%H?5e|;$vCE>jS4`TsGsXTHIMx`M5NNM|y)q2u6Eu$01P()8dvA zj|QAf;l_8KS=1g=$Sx5l$IB#Ogta{g_)*C2=Kub$YXs72@I#scG(O~_Uh#^dj5(WkJ)M- zuAV}k*FCGIuQV5K(UC~yQ=-d4d<%g4G0}zDqe(nCd~zLZfGzDh+e+t-ftGB;`7~aI zuGdt0KEPFExj98N?inmgy6o87f;oEwR`nr`$mw^bS$JQiH&Y`WAltX!kC|%;mgIeQ zGiw&==~dgxC%W}kQH)g#6EU2vajwLrwQ!FvD*EvLT(PY_^rR-gL@CU>mw7N^^}20% za2OXCt@R`8Nvy`@Zc2#&R3f>`inr+CYs?lh=i@R5Ik>?3UQYe5KY-wplqL6yWTRYq zZ=V>|O{+|?OV2nDrdRHk7o3ByIqx^cKpGu#dCW<$pn-kVEWvFsy^>19LKP;&Jc$cK z2C#>g1y3eJ+XNOouwECwjZLpc3dS94!za2?rO66Qk=*%4NEp8@GR(D&4_184{jovj zGJ9jN1V$@?<2)##`2n#iMa7lW0%~hxgda38q?qJMxn3=PPqmzTH?k z=~j(q!7&=Hgu-yq?|)#@v@x3{YR)14kq~Lf5aNC1Vyxh>bw(OckqY#8UilxV^t6JK3pJ|gR4O2@Ya!T^$}4`e2Ct}HS;&cTk=S+ zKQu8sj)ga_w#RN1a?%4u!prY1_l|XsVkPJFkRNd7qL+u@a3j#uPZ+p`xHnFVy=Q*G z0$)wY*K{y&v3l#^IBvAVbrrdV&{XAHA~F5A7hk)`u?Y769XK(!V~Cbq`o|QDiO1@T z)s=6H{@LSCg>LKJxL?!2!ea&C{Iki zyX9yc86sNl_or44Vji}qR zKtp2dvTdWoxXP|9zuik4Xr9`$3LP#sW*WAakBv#{cRTHrtZ3PJdCggg9IM$;7b0#Y z1Va8kX0{=-f=p);x{#XmTW+ieCq;nlY^ZPynJzse?aE)kR~_kGnVfJ*W##huaNXrR z(#pP8E>2FXMCbt=2kboW@xm6rz_W}DmZ17 zqjwBV%-`3Fiu#Z=VY#AJk5OQX6ZQiH8V6e*#I60Js-w~%J>`+E2nS->oZHr?`xWFG zY!e!lZx_yG@Vyh_7Hi7uq-qJj%Py>L)9ZA!XSD9a_X}8LVvE)}RauUX_#a0E=tBlk zHbD+!`;q%~3L4k6W4T|(!G@&dnTKab91?#M+mEgb3@ngQPI_hdTs_!SK&4= zB;f2=6kjaiumab#4fWs@3;Jz+04w|*M~~XNNN(E&A^a-0BC}VAru+1&J;>8T!}4NEqSH_46J_}kp-zD%wCiE~Q#k7a`!GA6U=Cg%@W@}v6D^sth;&?l@65lZEkF9K0 zq|5WcSXn1J=+T>gx!s`KKGFt!(T3%|cvQdP4)pLH^FPCp^^YxruG>GUSKxUl6>(Dq>3s__^+2V^N&HzZxucJoa_*8fQg4Iv0 zw(n(1mpH`xKJ*VqbNYuk*T1VAPW3mp&-utyf8+Snp{e#uK8k1md?EDQ2OUGfok{!e zUv}rG?)l*suT2cz<#4mZ-3F_7JKW}QufgeqUfyM}^e%_*ad?NrE{8vPw4{G*-{bX( z!#0CeLeeFj9gcUWL&{0G$@_2h_V;;tr~yQdyUpue-YWaKJxbKW@vEfM zVf~07=nALBd%*d%8>IcJ9zVej#Pj|o(qWv$a&K{Zl#6AzTa|WRl4O>+bQH>+ST=EJ?&F+ zd$Yc@#`#lT_j9#Q9w;&YkT2tj`myYB8uA0PBfOc;%`GY;kmvk71 z97nzm33i}eIqr$?c+-pzu3uui&~EfA_2YP^oml3)LOk+goKk-0!#D|c!SGS0|{dB^z$|FWKTiObZh#pS1837N;}Kgz{qP`iuNoPdic{AD3agah#GL;YPQc`;p_c zM81U7laT!>FZ0e_zMuN`mXiJvpZ;%fezYsc9qBB$cCPC}9FUH~upV$fg?WK^^cUr) zofzk|Z=1_Q|1e)rUfP*-+;7|ma(x=+A;t&&OL;k;Q9i~c<)l2cYmDc9r9WwxD)SBf z&ba5eq+Qw0ymGng&A6pJl%M#NhjyYq%pbHD?GnpFew2%Pkv`>PT+<$`r`^_=yxdQg zJg&5ZpehqkxcaOV-{MLHEl0&yo(&lB_llhGC%XsoQ34CZz>Pi1Hp4gx5 zv?J+zebATjN4*(el%Ia0-KanHX)!%QoKmm2ALY6|%JYmD`Y)E3^3hI=E6TxgJPuvn zaBjdd&Y+XPy5mji~}DZC690B36@K=KjW2lqrRlOJ@Py8*iJ|~l!N}D-`J1w z$+)IH8eC7>iFt?fRI9h&XfTW`+S%m@^^}M5QD4g8at6E5{^Y~>rXAVN_+UJ6UgiA2 zxMw@{pj}x{x|GxHLcf>3yQQRmgyc{AQV+^QJxR~oIWLrGC*~pApZ!?RI3peUi+YhS z`_XT-8~ewQa>n$?m;5+hSnrU2s**qDp&oHP?ag||5&c0(Ix&ppXWpRwIj-6gbyL_E zu$}a%FZH6`C>Ql+nf*zZWsZA7+Q;=gbm-gl`ki*7U0Myl#5i|;A@35Oc4B;c zxk|sVp7O9C`P`Wd48Q!5uXTOh`#2>L;HpK zpW}k#obqtJd86~c-XZC7o#6He`8`jh;9yjI(s4&#{qrl08#_9G-d@kozxLBG)6 zZr_l{Nhh`&^BezJxd_>>YvCMJ6GW*4PFi$eBh|fI9 zII3q~<`?Qox#>s73HdB?{X9;%k7RstUlHa{%2N;0uH;8ODL?gMJM~~a?L@y5kNLpm z4ddSB2=ih+xx7B1eWE-P&cSBrAMzsYOZ(BDtmn96+;O~+e&qLR+)g|~>d!LykS`(e z2#G%vbUO$8#P}{>usg@E>k-B$^`IZ=chcjyVVQW;$Lp)?=kXKH2jlo6ofuNSne0Hj zkuT+m=!Nwc<1uPK>-eeHkMkDelX%pF`IYq%oaT8A>p7lSCLPwtejpy>vLPwyAIC4- z>%my=dU!L{Q_h+2IIielw;$F!CO6~9?H2OcOmtVf-kcX1AG8uFE= zX}Q<4AL+XN!}^AC8;=9Z%Y7pG(Lad!)nq zdN7Ks64!B@e_}hjy+gic{LM5@eccz<&#^r8lj{}yLp-h<=||SbkoJk|y_`^Awy*Oz zVfl?h+MVMx<`>gvys{tdPCa~FRM{T)XPNQOay`g+WINZzj9bPP0H-4 zjOTbhjN&-tRptqoFX4GO=};f$3(hNyC)$N^LwVi4)kCfq^D^yB`)^JD-p3by@V0;Y zpSP6sk9Lb8>BsdfNBVJIuhI^bi}>WvGRI-7%S*l5yv%XK?|Inooz~9%X&B$^NB)i< z?9Tk-FpOKq2klM0S*Aaj&uLfI6H>kiCbW}}o3K73Uydt&UlH{WcBTA`YsLlfsXyy| zo}Z5WK>R3AR5=f@|DDOddl7$?O7iQ!hQC+3>q5m#?@09c=EI%tzfwt$Q@*k%={oez zQ%_9qHhLq20pj-IO`AFoCP(G(S@yfj+JCS)d5?Tu{PIwMpOCO!+?hP|&7GG%^6w8N zUwZDB=f1piZ-6EJ^Zww|{SUrz>wkalxXW`#^4i4d-?;jPdjtFrpLqXYZ~O5P;|KY* z`!w_ZmSn@wr)PcnQ@x>`dMe)05yQv#hlP5?|8ITfPYyr4WslXrxGj0*$9wO8?78E2f@RDkP+OM?K`R)qP>OWv|mFmGe zf;_Z)0Y24X{s1(+_6Df*srRXS67}CRK5oPJsHKwHy`gOO2W0%1e0!b#=Hz`}IrP-Z zKj^A~Mt8IGrC$!3UikeS?XCU)<3Z~W$a>`iKg4{=-`e*XJ$w&(#mAa^e)Mox4OBTk z^+1R}mX#0us`2;mzF-IHqwR=4jkiy9CJ+DOva3#iW=n|2`yTwAum0e(Tar(&dj79I z`rL!ozlVDI_#5%~ItxfSsK3H590`7AS@q^Pe6iE)1*r9SSpUf1Twjb-T+jUhDn9ya zJny_Wz{fxGz#o0N)5lTx-I$Nd^*zQHaPiVD|N5JsxjR78(|qw2dN8l)c>9=-H$cj#^l7&kp5}PH zEBN2^xYNe@!S~ld)pxhc3wta7%@3NrzOvc<+Yun`Ll2oe?l;7Z>hbh}07;Kf@flxX z9kjO?e?U@wkv|Ia59dYrvoL>fUMlS=j%SYBMZRtg{)omW`!jFP1R=ND74x#{!#Jh= zF+b5?3Neo9SMB#|yY&au{+v$%*-z&+juZY4hI~-AyxA3?(!o3#L&hhewnKjMiSr2a zana9RAun^iuw&QgUoN~U3FAuj`}0oIGY6F)@&F<8c??w^_)Fni4@iA9{tk6o`~fn4xK4?o(m`H{A?c}oKG$L66;Sbben)%f{6>C? z7ruw${(|3A`}(|egV76q+qd)gIgv2ML-6@}!6K{`U@DuSVAN}ZZ9%(aqj(A+M9OU=@Xy^DM zR0>t!PqBZA`(Q%K=ldn@n*eto_^XDo-@Q3NlZf)hkai%9?P0xZ?M}T3NjIiLdbAHA z{l$JWLGHf@9lz@O69)gx;75KxTo3a1JhXodgCFS+>P0h4 z?lTE}zsfivg#I7-8!tU`|0ikRjIMd|-M)@l9iY|U9F^&J^3Uje=XoO&k=8^w!-29(DoC}$rXQj>ew^iTW$K)TN9k=^Ze>8l10CbrV(YlaZZm$BW-IU9QUfWM^{wJ_|^`+8_A3PW{gE07+N# z?Dy7&ddfw6v!Cg^!R@%g@=x2Qx{!8df9grPnoqyGHX;15~MTiHpYZiyJGxhzK ze{^$SV{22g=8j+ew~y{__IO>EP(QU}=Ss8VS-_%vnSJOtLdrq^#r>?DjT^=P(Td1^ zEx{l33*&_Pk-Rko01{rnisxQYJs+A%^6m{(W(SkB1DBzs?s287CWq zzi40jne`s7FqTj0-uNEp=lLR6Hh!5rihuMLiz7hew<?rH^~$X~s9@AvAfi@x^*OukrJ#jehP4$aqk^Tz#R8I5j#= z$v0j&aclK8#_zh2uSqA4d)4EyTTOq$qiz?JO+TN1#&%ixJRtcie4gW=#nw^3v&!f` z!@QaKNBKXq((H-xzi|E+pPqbeQ-Ic<<$1His^C9e&)mK?T;Vu|4U2o1NCQrrTdN*wlDnp zngF#uH~#4dgUnylqd6HleAyp19%Q_>B*f=@M96wVmG@O&FLq}0tLioPHq$Eyb^d>7 zb?_I<1^Ym5<|U1jwX1^uj9WsJBh!cVIxb#o4SuEHNLR<-$;~$YUI!NZG2NILziho? zksjsH z_D}fuKztSHQchprBabnT*q{DpJ^e;V`?Ab_1(^6gCkM@bjK>W@E*+l>vUnt&*gnPj zEH4{g)}L{}ddgW3(msmMeG%quv%_llQ??#q9N79WlcOkKb66L1JxoZuQoeYeW4+Of zbp=fzF+ z;;O;$OB+HyGC4McdDF^_6Q3u>TD@OZU+^3DG3>`Y*Ru7Mo);gw!txCEof>C<=y8%X zh5ST4sGsTqehPE>j%B4Y)N1~HXr;%o=f@>}KKD9M<@^)>9`Y<8`I>&~Y+fDA=53p2 zechO5(D1nruO0VF7ydFl?q8ad>sSBH^!W#GtAQG4JF|Fa+{BP}EW&JlqdtV}ulSh9 zi}BeM@|@9g|F!t{3}*{zXT+)QBfrIU6wjk;A^A}c)&DkMf97BjFSC!?)z@Q~H>elK zE1}iiFP2q z(%ZB?xpVCw|N3{DvbdxjX(yH$A0|h0*cTh0_xd_wW=J}u%lM;w%){CayAUsiq{IHE zPlj*we)1^sbbS6+w(es;t^a}VmjTH~+e04B#;?{RFL8ZH$bPmDUzsR>u44chXKW|F z!EF6OzO)DBFXG4Jvs9wLIKRb^bTn^%c9rEXtoMvh?YL8UFpT;6_nHXa9!!^q_AG&IwRY+89w8(G3-OEetF2(YTq0k+TZZ9^&ZOxSJj*wQGP<6 zQ*r%H$aX@dS7pBE?;<03`bc7Yqk8@>vj+0_poh<~-`Uci0k7Kq7W1vV#r$T_zs4Vq zU+sH)$obO9&q&U@&yMe@a~%)o>92ZzyioNUfAQ?}KU@Asy5C%SG2iNguTOvD*z32) z^lHk!93GS*zz-q^Xdi4%gLzed3uIC(=u#$(}P93oUfg$A1Kn{?}h8p zOHLU6sbj@{)4j!Vz5ey;PY=w{-}%<-U$=ha40JsnlNrWCUHa!5&u@49Ux@6vD=J?g z{Z0*?AD@;P#?#x~uhVZ6{gOCt&NWWB?}+*(Tu<=(%BcNf_wR`3{kK}q({)jD~$ zW&HfcU#!>1UEd=;MS6?4-tga{O&=<@lMa7h%<=_?=ef=})qQ69FSxuO|DUVl-?Qa^ z>J854GxCY%+ay|tgx|%V=Xh>8&wb^~=jm_0&!?{5{GEX7liY9d@$wt=Q(b=NX}AB^ z=q0|tIPx>f!?C>&TqJT#N9+4o&YH64>uHbcn)b7d$LY>u-rVTpF*(n1dA@SI+5M)= zMZMl^`v0Haqb2>T6K9{hNXFI0=BFcX_5Pvt{Kmnl{`2d1vDy2L$`juIP$$mcDE)f< zk8nOXcyaq7yqDuGwog5~#r4%Ux(|-@s?sk}eexFhsfGKth<~j2S(oE|z?(&P20Evs z`MK)*)0fV1eO_(5xW`A0ANHS}yw$fTo@(Tq!EYA}e)VTOKea^XDQ~r1&ij3P7udhy z{<%7QT4ws*p-#Wpz6ajyJb0FTV>y0a%BPN=U0%A-`kp$+^>M=Yww$Z~7QMc{({ECo zUTAy$ywD#x$Mf##hunYs|0vGY|8Ew4QjDYN1I6;i>YwRzTxVUZdc0A&4!qUpTo*de z?zzD6=kE(W?Z1n7qxQeh{ZG|7hdOnx>j%Df!Sluueh)fB9;w#hQ;qXoE#6fB;`EZE z@0ohyak|%aiD_{P5wC$wv-P42=x*93SjE z+_8PDw6v9bj`#I~P`bjq_28~}@3p?CJl=O~cyyqrJUErk-)W?B;N=58uBy-hI;!R0g>+VSl?7S@9Ks#{WrIla98*`v*@h$OHkPK#6!TCwQ;KQr7KD$ zxrRKQJ%l^ir#dDc6WK2t9_{TLg$W*?kPFJ&n&y;Bvu2g_0Wb@H_E|siA@z!5tyy7K z3IEui(UD>x;7tnTq4fEIjYa__``73JQ}LXueMS|82t-IObk$DQEKet4U7VWq(SHmm zQ_8ObYIpf$O+YhJjwz*3XD!Z2*eEjb135zw0YJq5gqq`7KW*_U!L(XOHlR=Ks2a#8 zqDe<*?p2E7-32j+su;rDKLCr(N>YiLa6(nk@E;%^hASVev(!tS{Hq9pri}s|TQRI? zxYk+Q1xGt;cl)fo1V6*bK84zRmG|>DYhk+zA_e>xgpi^Nnkk|*O!SPg_Y3spgZu@e zR?I(*uRfK75;JWAGjBCMDpb}>KH)zT)%qEE<*99GH&WIs$DI{u4m1KT2nY?Mtep&9 ztMp?)5Ij-R5wu`pnRN2hzXBO8oZ%4≠^rVRV?bBI0csn)U2W+Szh)CvawQNtFy83`Z=juMooe-Ki}C)ZAjN>n=92kmXx z^7LvY=}kh{Dds*f>#ZNyN71aHn8s8qM99#b;~->mJe6>svGg}+=!?}TRi*JKq;rOUn|X~acwa%A~24^2Vos> zNh=v)wg?yeV-HlCNQy4K*i{7mQYxy6QWHc+R-l|rY2m5;lozycmgoV7M#3a>0>TS_#gfaW zEg)2Als2bR>?M*GQKdh11}@0p-#l%hWK8s#f1sa!+}kDY55qI<8#Jv z7&QVoQXcK;pGxPB;}{B=J)M2DJSy!y3NSMz%BrtbkWLp9VHC`SapK33qv&Y7VN2V~>$)~=N zsrFfVI@G5}M6(a$+zJxNDbvwWIXglVgW_Cq{5qhoiH@gXQkN!Lg~w$0oXA<|iJNJf4-u@5YoN_=-IKxjeoqk7;@Q3q1NhI<@})0!Vly!vFvP literal 0 HcmV?d00001 diff --git a/openml/tests.test_datasets.test_dataset.OpenMLDatasetTest.test_get_data_pandas/org/openml/www/datasets/40945/dataset_40945.pq b/openml/tests.test_datasets.test_dataset.OpenMLDatasetTest.test_get_data_pandas/org/openml/www/datasets/40945/dataset_40945.pq new file mode 100644 index 0000000000000000000000000000000000000000..ea361a831786c09d374aa83fc9cab5be6cbe0cf1 GIT binary patch literal 57430 zcmZs@dwARA89w}~NK}gDH}V@>u@&2qoY;wTYMM4Zr1YR9&N*$G^gs&~6kCba*j6gr zDJ~2!EI@${I*w()$Y_8v%IKiuJP6Q1fdbt)3>b$DIw;U_7>se;_jteGKi_wKTo(|_ zvMjxa=eeKzz8?>$gY#Xq%kA>^xlVQ=f)HOvA%y0@zbC=JF60WhLUpc(oh|`RIN7@h zRnvtx+;rhI_{XuT@bY0NHRoam-9=NE+2(}qqP(s-o@N1^>~Wtw9!+TJv}=y|uv5H| z5`RO5R)yIA?{z$Na2Lomr|^XW{13jFb~#<{zQSR+tD?%n*EJUYGapX*&m7kUC;h+g zikk1H8sY6nsm~wzzjs6#(cHfuTXxGczg_v4Pk(&pq5FQFdgPAFA7Q>Z{jF=FzK?pQ z|M~b+X6YlH2kv$SzSo|gTURD+y5s^8t^94O>#|nYU)zejPiVb&zqsYm3p*Y@6PM3z zXIJ??sDd+2%KMQ`p{c4S0hO5Qy-s-!^&TxFpZef%ja%#xc58F+T8D%b>d37hExzE^ zN%O;*zQBJ}p$;*{tb`byK%u=SdtLnh9XvLjwI+-S zJ@$Ww?}L-X&rb?{G$(ZboWcP9pGW@x9l9UBr(LgnIj7I{2j~CB@2AJ+T2!k}Nf>EuSkJ`ejanjOru>LeSR-vx6$4s2qgxGfS2mV5Q}Q}XpD-;i*Jcke zk%e74Ttn_NEzL;jl}$48tXS1!rsG*nZnJb_G!B=Vx2PJSv}?4wM{bj=TlI9>(5Y+d zVy4`#r3^ih4wq01_*6`{xLc^x17FH zM!2DMaWko<F}QX@m#f?2nw2m!8C~wvl5qRsQfhvq zmC;7E2|brFv^tp@5C*lRnPNuPr8A~gC%2i22D!(Kr{o?jY7Wn*nmLJydZf5q-LJ*q zdErUrby^~+#YT0x!?dD$IQY9&*u;cQY%Dc>N= z{*c`6hN)}S&dxArE`dQ9v9v5%NA>39k47=QAZinY&e$5*( z(^%i>9W>J#Jhp=xVGS$hI2eot7q|^8H4M+k9Ta-BF>_e;Ia`f%+#Kgz&UPa@1~<2o z?y6!s9cA#X4PI2gMEyd5RTUPwT0X63G78a0Xf>(+8HFjSeJd=NbjC81^+OqbWJF7) zv!tBv>${>%*e#Go87IJ7E9MA?8M1>`gwPbiR2M<@J-%QQ7 z&toRNt-6)5v?QU%1WSWG68yUthBuNl5*|kM>f7}?x!r1T4Dhg6$FxrwA8l@@ex>}r z`vWKJLwGvv!G+eSX6YGuoe5JNZdg%|>I$p7KWo94$<_1QdDt8&ic#N1VZEKrM#t)t z)NmgxKiGCjdC-KFn}Ow&Olsi~H^c`k7A~iBHfyEU?`^)2miz5jP6=#lHj`h-YFka_ z6?Zgl3~PxPw?#;e#ZpC#i7S8S$DhKpb%1DjE z!)s@wHfo-F3-y3KVEn|xs?AdA(-W|svMJagBPM)*05$tPB><1 zS?*0r@5Lk8Eu+46oXM5ba<#8#(g$Oa4xWP=@{dkAP^)@7 zTE^%?I;{`u`|g|FF#Tb&s;|d_@lNPk%CumWr1S|xpO{Gs=@{&YL#DS4qE{+rq>nT> z*X1nOV~#7)BIYb#VPm%ZZ)5gkXU}$aBuqKJy1T zBX?vW30RA%O`dY*fd(1rt12x60)+{iNTW8n*O}(1X~wvNPMAhm2bxoW<+s|*_sepd zmK-03FW0VbP$0m!1`sycYFNjb+-X5nN;~$m*_bx<(1Cx;8;mFfSBQl(_rOi)mX(hM zKN302Q#%;UPXG zj+_ed1QrmC$Zn^*%`(#CMk?|lo6xNNkKrdcLAM~aDFaiBU0xWLMLx7puHIl+qecpn zNq@Bc(Dx|Jyu!mMPehh5uL^3yi0Z)y*@Q8oJ!v%UKidhhH5JW8UZc&#!CQ9Cbq|xRedCa3Y4RXUT{No6)W@#!hM&{bkR5U`^pKgF7gZt_BJ#ES96=|f z4~Xj1b7{FdpK_+nL?XP9S&C0Cnt6s=x_{8|BDF+FOhCZ%KVG!&YW)yvX(QbI{vz&3 z>+C>dn`NelbC902@l1o`3)C47Om4Bu+~;_z2qriq54KQOIm)Oj>uc>T>MWay>*|@@ z^Jo}fWAk=t2}t5vjJr6GXopmiRvr-3w(ytrOLtw3(rPVNPF;Zv+`%ia$#D^OX1g|F z;5wdLdccb>E^3fae$j!&)zxb(Lxbd|<tj)wwrWGd6nSFZ@O=9Y6el^0wV`@L88n%Q<{h%p+CG)q`08EgOuOCd1zT z+SzVqM-!StO}#*CiQsYw;}B=moX_usdFZh8FxK=zK9Y)AOn0O$By)n9HPSl16!Vd6 zIz#T_7)77eMQ48&Vo5IlUp6wK)o>hcgsZff7M%Jq$9F)UQ@)`t6<_AnOXQ9O1cp>x zH>OXI^wf=5dQ7fXQyJ4p;c;8!5*FUqQU`wUpT_0ygBQ7`kbOzFwcSX;qjm!rO^sHO z-@rv7%!o&e3Ye@_Pi@s;g~@%h%lM3zNKo%M;q6Q|HB-yHJDu_zQ)3XJga|Cp#Ia3C z>+vI@AAo0~duY)Xq#VUhVp>l>vfodcQ$feXKCF9iFno`T?%5GQQnG~2&M z9f7z-O)cq8Yg!b-tOXZsLa0SXq>)7_@kLBl*iiM%k5g~5Mk=kGpkYItUxYgFvpgM* zzwv>yOOI_gMydbukYJ73OPSLlQZOOB#ZJc))ce5-`s`%nGnB%&6}ftRmBA)QFt~*H z`8o(?5eOx4JBEhOw+r!v5f+%y{pU!p;NW5!mftw1it52SExIiWP_7HGSzNojp&U(p z2toQ3xw_9tv1O^(fy7z3yWdX;}2PUwIH;?s?+g8yLO(l(-=({rg5&gl+*5o9RR61 zRS5r^s$r6cv}9IK$bHn`7I`7?dwe*|u`m$$7S62=o7>Z4+OcA)(V33MlST|5=V2cG zdsx&ubqs45_X%XufmD12PyWl(-5b=?1%OU*EsvPv*|#QF*_U&&XZ`X0cmwBJPTkgj zVCFcT9LFCNORsQjPd0_WE}pbOiqZAd2$T=fD$cPGwTjnb=KH1!xF7PN1Ifqc7oO|a z#g)-GU@`!N*|hjJ&vs@PFV_$!^!~YfzW{AhM=E zCLUfp%(oiW7(VVm8T&zdxhw9HVLx}nw38ZV0fWYm{Xnu@_Y1SP=zkzT6+642Hr9r@ zywIfq*3z@^|LtSx&}`9(7s)5Znj8O$-TjaC^{~mJaR}!|YU*-(;IXZIzn+*-GWp*^ z08cl#zIK%Fz7zF`n~L4(!YGZ7a!&_-R!q0WXP*;HfV)<(j(LgfBEbf+${xIlD@Wt% zIot>K@B1HDe{gmgI-GT*dSd%FWiuh2qNGo`T&mjJj}&=e|(BqjNGo#`1DR?wU1G6*+^d&^85u(xRt`=mDo>ddX94}XXWZ1{IY|E$;6$-tTmh?(<0p+ z4NnDQWg>2LCY#0;~Zruhu0KQ ziKTUD5Q~KF)g5I`HVO>}Z(t2G72L}A8p&bl15EsO0fOgh9Y;kL@B>~%d@?@YP5siN zz|(Y2iGZkdT*vZIqNNY@v%LvT{JYrw1)bDLywuri>Dg#JwBCu2lpuo~z-*tcP1EG% z68tAD%heG6QxFe>xA1-Xps5(aOQtSCapHFieLBz!yFZmXA(sHUlzV17;j`PRM(Qa3 zfTQJ3d>t1045&b6o=5dmQTO?L#4^UXWoV>-QtWoi@ZPAU=c>Z^8J?O)9&=F(^Dca$ z*af9DWc}(PW7INYfRG_OO zlE52yw-e^HFKgjbYzL}^0?DDP3wfyH4RT>Iw*hVw_j-~)(UzvpKpq;+8vaF&$yMPc zc&`&qGtAIDw|F@wjc$0?(xXHzQua6ppqjSy*+0_#nzC0p9W_WxCG2-PVb!iE1PFY7 zDcLC5{gFd3@i&TqDw2TPtR&v*#@lSbaBRzJ>MnpQPr&lck%KlCQ21<40PL*G_!J(c z^4I2b&a@oUT|o|Ai+ z7lmjifS{>+k>wxuglT38t>@O>3u_b7RQ(P3V!NwM*FD}kNF%xdcxOl(OGh-)NOsxn zSCeyCa%gUD)Y~hd@V20`-}j75LRMg&o871n<67VB zFuxjDqGNVu2z8M%pZ{Emky&6Xd@o5i+Kk638CMrqYI06q69ueR2SHW_5D0ZSJe^9| zHA(ZpV@MSr#cntV5kJN(r_&jH6Y-rZ>++yBnu6yD);i?;^IoVu6Tl{A@PcAo@1wJ6 ze7f7c1}d|(oWohC6H1<}z9T&09n!4{xRjZ%WdVMiFz3H2CAdMtqqV6sasg6zI^j0y|kg} zXL?68fDM+ugXwQHGbW7A1^{aMR+Bsc_mjVb1=dO%j8Ir&)oC>F>VBk2*LcW-lDpH4 z0Z7a-0c1+c-1z*(wF`mn#0kYho>|Qz-|GAWWYo8iKI)23^{@F()4h>RS za&a+`5~;Dcj*pa2pS5o%{<0VXVtKJNuZRp|13Ln3rdU6IH(WsOCA)>Uqovu(pLl@ z(uWg)d)b-`ORClED1^6cTJG*vilhytiY>IkMt5oWBp!Rcjr|r7l!GQPdnvsNLi3<$ zp4eO2l^u=4QJ@44{Rgg=)>G2czTg2e7mME&!4qCn!YEjE+EewxsZSg{IpU=CDsl!3 zA5Yh>4jKYnz+4g}bS93U;%4SK+srIH4_@M;%@J~-#F>M7T2E-JaJ?Y3L(x?qZa#hx zz9|z=VBFdpOrfhr4*h}Zid;sV^(tl67MFGmlW__$ZO2dO)kqfXq+ z(}Owx9-FpwW-BtWD(?QmQx2R-5*q^JpBZcMqg6xMG=ybXjbl(KR}E!%%zjQ+Neb;6 zd1xtMX`n7hpX~GF?`=joSB_8iQE9jl?P4Yud{r3Iw8ThYQ?XNxnThc@xy9og(nf*V zoxJeaojBr?3svBdmN1k4cZyhb*gEzp>dSw_4n^ZQR-`>ZosVA;s0lWy$ul>Q5~myX z48W^sekeG%`)Z^qtLPye|GcdG7yf1&lJUnyfW7l?@k8-!M){Fj5<2We8*z%zLk2Fj zqYM^G`-kbF@tLQPwd)UzN>xhb?17BXssYi62Z{iqE);Q&rL`nisB*=hicmk9^r5i! zS>q5y&Xkc&*S99JNku_z_>KTtgO`_~j9S9NmYnHghZ1Jsn_|b%)OGlnpgd0xCBcl^}^{&NINr~fJ^;1_1mK}69 z>RC2@3#KIAgoLDRW8-?7>@8)7QaLi0cik=z0QZ&#@+y~a^Z0QO+(kU)Dey;lWd+VS zSbajD`OS2{Ff^{mV#MT=K{P1dRxTYZ4K8+7AS?7usasy7jX{B*KiMbOwAt+n^DJp{ z(i!d8HC{;7fQikN$X51?-TM4%x_=JwEU0uZrj#={M*u1-Ab}#;QG9I$`GIR3%4kro z8L9eyO&>i}g+KZq?22S?PNMolcl*^jNFyPZ1v(Y4WVv$x^Nze*w6XX|v9AIjDGYsM+bHIxDDTF2eu>0JTny%eeRueQARsoe*~9%XU+i# zrAx|kYH#RMB3*$|^;A3F;}RzHL@qTg2>|W2?EXib-Dx11EquSvBLWDvm%>;{rIoOB z91b4lHN{;_Ztzg4rQf5mV4+wUVQyajFLq4snfj8tB={xJn!se~>FM9nX6jJ4bDaiN zw1KzTCsX)B315LdrTA%%1=^Lm-RHue+nn&HT)i$|q?}ohE)p}d#I1;%eBAAIkp$Fs z@@5D-dJg|OkVKN9U2Sb4>Z zYeb*VmtanzUKGC#aP#a(=|rODw*& z3em22RM7Q(UWUqti#Phg9t_(onxZ6gn!{pKuZh^SNqx|SA4P`w`s=G8ONI{!3 zc9`k0oW7k^6S11kn)$-fvu0<+f4Vr0>=x*lX*Z~w;PLQQ0gW9Qz$*z9KcoJyrTS*r zNBIhudxi^N1%KB3Sw>ar#X^;=j;3%`8Ok2}UQ<{#9VcwDbSq1p&qC}J-y_KY6kpu# z{9qxLCWo<4K|1%Cr$6;R40X z9TX>vnF)0WFR7iT{r9l=Wx|8N*P;H+vMun+;cKqpgB^Mp1vIIgmvgO)3=*;|!G zVjs66g!0q=hwZ2>;HacKOlf79Z?$r9oaLB{_;zhHiN7jwgI2lO(rt}CD+U}-I^u0W2TGk)iRTx^B~kDBJd<^9h6ZkJ7TGMAr1(5tk<9Zcb2Vy1p z+Rl82{}Dpg?2V8j)a(7BYNNgWAO}x2Ed8t$pilP}yp)Gc`F@z16dx?Xe<|jzjGn^B zYx|$rwM*UXm>*oWVm?w2rt5e_S#M5kSCL>F{iv2f}yQe&@^)@iiWG`5*Vw zZ6>~=8igYt(xxSTT8z^8x+>a=QZL~!4;8>bJO^rD`k^bxs|Bb@DU&IsotIowOiPBpnlHe_OB%4r7ToSN|*<2PsB&6I0b*hA`Smyffz5% z*E%HSCP01{IO#-o>L?E|S~h-yvP*p4=WYjrIwj|nXS6Svqh2+gO+|tIi8S`e2z8ME z)bklAOSPN$hyggNIk@c+abFP?q;oN)9!2njZii3kPK{1zkx}6B4f z#L^vEvSmSd`DCNJEukl2KjSM{z9R>6?x(IDs0VT$-KqJpjd=%flc&Tx6xU)9EaQ~w z?1ZY=h$%&kMkm!tkOT`O3{SFoFRDB$#jSn#oUMeSsY>k;2irG)lOcr z;g%wwGxSN3cw14+0>lq$iE-kBJyy$|9{JX;sWK&z`#_qqONXE4l4wG_#UA{K2jJB^ z^O&Hgpo~*(WJwTTRL-pwU*TbhyP8)W9muvb-F)S}=4(r{51bOMtKPa)D4Vcyahc;9Z|w;;dQ?6Iqr2&=DkaS*3`(3x7wr zCk+1z5go44-iF1PaWOG32s9v3T896xmHsm@YLyZ-GmqOFsUwb3Sk93&zN;2e*wcKd z(nq!dE!On&W^x{8u4pPnxW1@KM6+4(PgU3va@0{7d#R{Y;O}dsdn#ys`xp1lh7a*_ zyW9)gGioNq8=QO>NTmUR^T(_4mp*0(D57Y)c$Xipv+b_%TD6AlG7>mhJ9TPsCH`*- z(xwK5E`U%*XhAV~b8%qBQuQK_f=g{uyPeyFk1lK~NA@rGodxuBCW?RUMnT2x8lk@W zw)nUt0EMZ?#Ge{qZ2r*DUwmwnAP<043(OMTW%`jMRk+B7Rd(0RVd;&<>b>MYCDLXm zZVVkdjJg6RmC0&y7}gxnkdu>e6F`cbsPpy%OdJOJGB3h4La(~luEH^g#|@!ujw1c7 z4%ZRDP?e{6L7M%Z3@Ud+9bzY=x#bHS_etP8~tEh3G}z~&NH?orPa zU*W=MV1)zs67?NOLIQ-6WX}Klq9aF9jy&OkCF}{*pRS#ce@^Hf2Kjf9y9cZ#x|Os0 z0)Zy+Lq5N6k%FYBZ7g^ua2p4D58b2VFT%z%^LIMiz$amDSDJuLx3=RBCHNDh%%TP~ zME=Z$@4zKqc3nIxUPg$6g9M!-ZKrTQ!HzcY!yb=|`Ii8H%GEpPP!Y64aF_gl}^m z`@0idDpeiY%**7ABD&WQuT)Uo&Ua3%-1extn(l>oDTV{$MhAp(Tv-BNRviw!L&Uj3 z^*a!GD@p~Rb5lD0Fr-BQJH>HeNpJ+W+QeVlBcFSLOw1)lCiL!Yp78XTJ)ED50m@zk zWYUHrdOXf~c*~5&XD$gAqdrpP&@|My$b-nrGN?c&M&MwGpMX4yvqCLz~c|V5sR{TVNKo5hG=ize}`XD%Sw3n90P&Ygg6GXB8Q; zu@mTIkm>5TTTYb1od_v)fzsn9tq{PkkXJhyY zPv~&Tt|P%6B3G+}+ax6$gT71ak#yeW<9{i)71@9g{cOI=L z$(g0@)!KxmWei+n>;D~!khm(g3+g~e04Wk)8pz)T)Ym;tc&3T^$7F|B?gum5$Oz!> zW)SaJPp|KO2p9)T(-X=~+)d=Q#mdb)ue1NeTtH4;#x2_al=Opt<`}=)%vymXyqMW(wc5oGh5f#xhmpUV&bni@c{j8**??upvU}$m|8~DZI#@R4LkuDHpP9 z&erj>wVWH+Rlno-?bH-M0QnQ|4#EOU1!n8WS;b^e89kukD;KKe+$}S2paHy~5`Pww znnKcC4!8OWi^VBE8{o`Fda+T_WK(e9;zTsUPic_no<3e8+ zfGC;g61`1uxTE~|Y1AsDOVvw~5Pj_M4g1^jPfz86-y-){@<1nNG1MxV9oyLO-Q>&? zoDyaxz)CYt-EgRy9I>526znAqKXqs5ZJeAV9p>wQK6n-( z4yNe7tXQ%_{Km=s%70<8_`ERVVF!V?`+YIf#H>?;XsF@&W^uh2xA=u2JvO>M{Bljk zx%6hR)5K!p#)aB1fK$~h376%)gegBBK!f?)(9q0gk#aPsMec40e?~^b_lJ0Jyu?XY zH5A8Wb1?q}^IK z1kKw2`$a6+;_yU}2j+N$@qu3}C&pTtg#b?yF+8{w6oB$t9_02Ub48vF-^#tkw4kKe z5@eR-PljUu^rix|-%-O3nZw*yfuY6W641#(5d{4QHx>szUvWal&&bSaY{nd0`@Z%O zZH!BcZOU`>(Dp!r?H&zI(%W^=-9trk^Y4`7JXqY4%vH>OvaNW^aIXWWz__99t^q=< z9}q}dRu8SB5n{l&wftee3nXQ6!~x0c?GV+DGE|T|4Q`1AyE9(Y$;(v$uJ`j8bbxhP zYkbB={bud=_#nIMKA1~Sh0pX=Hq|b60)hrQC;v4$*H3TI@oO#A8NoPy*x>}?EozzM z)1G{?V*!;@XsE%>o?+FtUl}TkyCibq8hP$|2=p`1({O@ zyj>=6$mWg!^aj%iCZKDNk_TD1#L|W0S{|6iCOj;2Zf1nKzQI<6s>EA+Q58Pu!oLK4 z(?|g4e>s2{eOSDE0dt(#Yp}%%z~ZHM>~wg+)I1KnLOm6Ai1;2CSBgEwz`Xyi;mEz@ z)hY-9G5ye1Tot6#b@&c}?CB#>Ckv^Y!s=Cya^_qf%DNPOz0%>Lbg9oay}KHMq8f`q zy(_ol69N2A9}n=~5Z8t1jXHVL#dKq>7q2NpJ?fne9u$}tAeWaQ;4!gXo@LqC_MCki z-oiUPQ_p!M%oZ8PXn7;v+e>Q8K^)l8iOhVC>%QB`HgX15A>Ht-or^&TExP0 z|BH75V1uH+)9UV>{(%7VFVsJqIQ9#AlT{=1DoX(Syj&}JS&6vB z@9IF)7!JH?lZs1ml;h!r8PSeh#ie&e@{KMf52m$r8vhnkZ&Uxq&Hav5O3SXh#EYu% z8C@t7DJ4$_0L)bOF^>yil-5(sA=1eC$}54AS(5uco{wmcx;>~?g%0B zun)6r;W(6*c55TSpC&N&>s@fbw9&jR;gJ zl39Wx{-VL)+vI3L<)&A>xe9lv;2}4`Y>_(jHhI;7G{*|MK_-vP z<0G*NgZ#6?3!E>kYI8)o%2p8a$4vY>D>^Gsy%r2S<-i?wG%|C2hYuw`MkCr~Y+4^t zSK5~uAJUdtbI}^Xc}d;YnLZ zIYNp2YjjliYc2S+rpVZeF2wvO02j4&D~?vv#@SQ{ytLgpju~s2U%X5xsEu?0889r2ks)g^9(1r z{0uWac>|qJlOI&&GCE<*E^w+DuqtYJZ!z;d?sKBCVz8ID-zAQAkC-NEfF?Yt! zJU%A!Y7Tsvn#gp!Tfv+Sd=CDq2$=C`)SS9)=6xslGk_gdg1`>z1NfP>To>vER{fu} z9>YRE5R#xxfr}3ZIc!^i`o&rfY0G~`UUuk5qX<|=SA_W^zdEq`s+8rF;(fn|@0e=6f9$x{o+uZm#g?&g4s z_s_Mv`@w>f)MK2BPmCE+&}P~&?p3DX6ISroBIBP5z<2~7miBN5W&k% z>)CNvbs)|`5l2RrW84O%{U`O@!w||Ly7!B=MFkb{7@I!{FItDjJeTaeT{;?=Dghl0 zZ(hU3a{7UKZ)d^q8I7CjoA{aThT9OY7F=g11eZJ5g=r@~P)d;KDx3cx#zh|2{vq5o z>;!R49U=K@O4RQO0Viwvw_B{?EaK0A(3D}3N0u^O%2w_N{5w0e9z^v^>}7N+Hu+48 zh*-Xa;rFV-D4k2e}(Hf{6446TLk0_mR1RNA8xWSf1Hj%SwcRBI)Hn}<72^yh;IuBH|p`W4>npX@>+e!3bKMt-xj)<$wHuY*a0>BCPh4}3Qm`7n469XBMlq|o({ z8VxQdZ-%86UVJL1lLon~7y3$|AOlR3HQu9s<{k%lY9>r_(kcjPU~^CEnb|cn^Mp3= zX2kK7Q{Cn^3tYFE_U~Rn>t^s~WQu#+a51UNg0%-qyDIR`RWa8fll-jA*oy|jM{gwS791fqat z-<>Z3E9D^EdNz~6zO41S+Lj^5(~ zT-1(THR}5g$U7oaf?sb?vvBY$fiJY9kOmIEeuQ#(PLb z?SYlW(_vt`ZSzT&m-0y81p##REU$*34Y_Z90{n(#3rn|afi4#RYZE}640w+i<)38SL`E2$^!HCh#JT#B#k03E*$3(#;lY~uU4`g^1mRe3L(!1oKz z2-G-Pot(PaRZDe~6E1r_T7>ToJGzwHAYvC7*b1akYhka%s3{z%0Tu6GyjBjkp9=h$ z=Qn|e3IaOZ$n4$OMZhKfxE5vASMpBqZ;8OL$vs>IO}N~+Ypu4Rp$?I!Sy9Vr;&eGK<{f7zqq;kkSLr*ThJ6$5LgBP6E#=}+FVA! z&f4dt+ja6!uKok;cH#3{Sg3eOqX3r0p3on?;@nfUGhsEnSWjzJ!F60WxuYLhOk`>X z%=p`hql|O~q3Nv}zfmRjmEyUlfbFumg1DhsL{EGhh9Wt(m0Zv5zk>VQ%#$qOkKjE3 z6!E=F>~7Y`WE>(&`R4?~Z)#VO%NOU*3%yx{@8Ur0nb5?Seat_yjYQ_A=73l;hR?C# zw+JwtW5-^A*U9Ybv^gQ((M`7-O?&3BAj{!(MNE!1n(k7Hm~|Gj!LDj~P=}GG5%fK)k-x z-EL_+puqPWVRz^wdNclMad<=UPrAltw`FnrJg!vKS>|e#TYs3m?}0@!7pP5RY#DX6 z!;AkZ-~}ZPU-EmvfV&(}c4f)y>%)ELpj11&}u(jkgle8`%1W1sS~ZP|G7leZ9aGX^UD1wBAP3? z>7y4PQq|%8;V&iw*KQ_%s?(OyktF`GMftoDe7}X}4(PLrYs1>3d;|=)((3uBVRw$% zMD1c4#CsP@&D}E^4=c{}U*rV-#{g}3n+=Y#W?i z5I=!jv^Q`YcmNn_rK`b-U@i!2M;)793U@KLd0h2wW(A0Cy_~ZxZi0~oKVOc2Xr3Q{ zb_9GzW9UC6Ra%O95|0mn-Xfk)Hr_s7H%IryJF@)b1!Q zvMb-P@M>yKcrLkd0S!D-OBrj(YpCP-8=)mc=rvP-)bB3xX5vuzf$ahRv>NHmTRX9vDzC%e`1fm|Z3$|@e=LVKCE~5{Rlwd>LLg6^a1x>j?PdZZ^44{uXE=8benViwNRwv>6>!~89x4hpLC~LQxVeJb zCO}_wqz>OT-{VzYm#!$oZ>(^`z6vV2Bub1lJlvxR<> zOn`P655R`G*%e&MgY{Tjz65+<_>9Wgdth{?&onNi&X|e>&YjPE26TFkY7{>PewzoA zPjXm%JBgohkW-6Dg}cyUyxNGGiEWSTH7FBD z^PmA5jU zwiuU{;xz&NN9ejF#eS|#IapYMcb3vI8NV+;`rUzV;|0(nlR4_=!Ar>J&G@pi;NQGp zXMmoSRtx`F52fSr#oTWNsM%5(?HVQ+SXlgjy7P||<1!8$v}qH!_6vz5*ffsz8B-ve zX)_+?=YCficNXxw2C1^Ql%m5T?448>^V*_jbf}VX_6#DtPoA-<=W_Q-@3B%PEA_ei3f%89)W2VzX;j?;{QD>x@}T#37}qWov)sG z8@xo@N|7wR;lgXSg6U}bWM3V19Jcv2 z|$2)^D6 zUa`$u+`!EuPW!=hw5?DtHi>Mnq2t^J?rHV=e5A>R#LFwyi=c5TF^b=J*c+s~OHmK= zYh;81%bA!DJX!06R8$A0r)NG@!`BxA)nA9GZst1xs|Py*_imnjZ$%Z-F9)3m&r((CMCn`H;s?oaPUff$!6R-I0i7*-$RN6v&@u_X_oc@B<>!52g7%;zT7;Bs|&>b3nhNYq3_aa)}jIXu< zoAz40&DN|XX zgF(oei=xurK~U?BlypT=_Z@V`IB|cl4l4QAQ+Qr2;JsfBkcU8+?9-ltvw$I8%iNKl z6TAe3hg&iDG!3%Oh0E=M^2N?R!-Svd;Ob!OZ)?~+Pkj|;*EvprDtroKVF{}mN%EcY zzs@y{yj;y#tU4OQ+IFzPkpnjIGg*vi-n{ za)!kpE%PbFAg~b);tCvFMt)O?Vxl{Y!3$n#qZaEMyQ5IJUc30jd-zEwZa$N|ays>{ z4f(#hwEkAxS^8?Dx z|BdqJ+4IR`MT%G7LT6KAg)Mj;T0@TVpvT6<)|NsWdW|IVU^}t!CABmV2iFs!F9)$c zG~@$Ke@??s%8&D&W!D^#fKI+ zjaX)@IfC!+(NzFKdTLzr$K6QN%Ei;|Jcy!(Rsko+b9B?w3SR4S_``U5Nuk3o9T-0) z_&PV~|0AAy9xrL>zj}5(oSF0s#pEnO`x&0og0zM=5ZP4>b_Y{e(x zGx3*>{&mxT;GjTVdipGFzl*lU$nRP1kA?o9y=8FP&Ft(P@&dF(5+3N6Bst=M@68yY zZaZ2{zO+x3)|_<~5DoRd&{G9T?3fepvVkk24ZpV-7V4wi7r!B&lrekhXj^Delswz1 zKCuXxGx)U#@y~WgDRlZED}T<^4D{!c1D- zXf%34Cripf%=}dSjB<;cS2Cq!J||Xjq7e!5gAVFCKan}-A1O-HJ0oMS6fS`zq zxK>=zx}c~3Oi=0Y&^n95{Cbz?@saL=WUZq724rW-X1YWxXfBW7qw|FjijxZi~Psl`uIy zBTq_gav|a}G9<U-AVEeWh=@#IKVhogAZW# zv@ugS;9ycrUGFO~;@LAMoP!I!B?vUJ8-5hqiS;i=&lPvluD(zgdKnGITt-gPb3=%k zVCu<%!EB(Y`xgJL4D{aw7uGsh)E9_FHmGZa&1I1W#2e#2#__^iuQZ|L9Sr8;uc@1! zD9c>Tb?s3z*9El1+tZa!aO6h#Z1Sl6MUumrRshVh(d@t69VHnz^dzG=AHhT>IH>6w zvTUojnUjB>FZt-clwiIJqEuA02Li)YPIfK;sq>g34tK$xBHM;(y4!HEaL)=NFd>&Z z7)%5hb1C0c6tE|XNCy*2f(KN%hrcad91A}dL{Jx|F}nj80fY>hIm7FQ3d}>A2`IY* z?7%x860ldm$Oy^ZnVHKcZ2N*U6QX}mx&1G*rE_qRNiy6<3?It9YI=qme&*9I8L^`f zY#dG;pz%TbVN_D}*(Ps=5z%j5Ism<$MYS1rmU$#*WPulgWfGM;8lWUi1=PI&z~fT= z2mr^-HH>)-xQP_+jvL@^IVIcYFCPkXbjbjmpe2`*aItx;_3&V7Hnq`_b-d{+y)hW{ zf#QISPQJJCg%GCYblA&rbD?@7MF0d61&*?SQErWo2c&`h^4S(<7z4!|r^e(B??ZbM z*n1S;v%%|(G^5?J7MwQrM{nP&q-D z!ti7Z6(A$WdinBL{f&{xB00>&%cS|2JnB!ul|qI;Wx{z>5u(_68SF)C#>?1U;+qnOSrvL&Q%jq&-HV zV)H1kCOrfe0u=lnXK2?YlJsC!+gur6K*fp+XXqU}zonbG79|hCfK3Cw=hLr@`!%k}ww#E`qSmlIg?BBi6xfudz)bvn6sVxJ=^3x_gaAqs;8V_a zzY6QcDDh^}W9K}o|2VMuZHn%UF}8&Iz_ zVml7pDxlWQr_Xvzu02l{pR?VV&FCFj?({?{6#~n{5)@!zK}N?NS>9+Q^?0JxC#Z0D@`{+8on9W|>CszC@#mx2 z)N~z9)39ZHE#A|QNXW^+2EnXP$MaEw;y@M zzC}a+&mwN~k!0{1q?@U%0t0?3ZmWhfj zn*d40zws)RIu!cq3HAe6Q9Nv6+#t|f4s#|4!X%{vaT=j=^qXtgR%0+N83%&o zNdRkBc6QFTDTBNaC#4{3nwN)%_`X0yIq>NrR}y;R>WN?oK$J8pnF|{WbcPUC z5(s2wmW5f)#w{YsC0GQCXTlUqjzvmI*x-L$==GI=-X*j|LbE9MJT$}o3n#`xh@XnH zea3J(DG;Nh>I2klR*wIPzEsO1G);1rI+;x8azZ?ik#-fj<4&xf1wN9m2#EZL1wl|9 zdWEB#CwAKF%VA!EDKJ_9BN*XI>860w?O3&MNnaYdD^}aF+Ibo2Gv~|!-w3az!%MEg z?$Oj~c^!v#e#`9S!B(pa7^G)R%k{C-gL@Ck&R*iaEE!MC0HhJA2fzLjFUglEBgny- z`CE!osN+E}oL2F%-+<5PBQJ|Y6M5>!Jm7d091))N| zf&QB-xr!C2`If7I8u^$cg#9Z3;Ac>KTqTPr3uRMFb11B@k2e9{=G0wY`ELp#veAqZ zazG0UfZ8|&;?n}?ef>dZMut;K)70*uR+#2VM^W!hp=bN-yu(aQh2?UvHz(1CuD)p7 z`vk+yzZ^jeG5Qj@ld`Fni6xz!L~JGoBMG1Ru3n<9m$^!rj5nUUVp;H!vu}Qlbe(*-xoiI+R6y z5_3JVk6u{E~HAD?d?&02|r0ndh>{+(Waf8W3yBNeF9>Ae_Gl~I67BGd< z@o8rnK-fUtEFMY!&NsTkKM-Qc|0uWfRnRfQq9c+(D|8_l4V!0k11q4L65KrK364}U zo6<^bM;m|I^e2u6f0P6pjsN!9v+v7?yw@&fm-(7&VP zeJy`edubsA7=x|7Sw41AoS}I$(>peU!+*yyo3nPPMnE5_rn=ZRP~%-^H*ezw9CjeK z=DAN{gNKl(H+?#f1ukVG<63v2!8YlX6O=w@xdVN?1YGJQ5mefo>{Z+`ObUk*(Rk8K zrYnX@n@n#|#PP8oJNki7wq#>dHoc)ARmgF3ai2<3&O(^1yar1MV{SHUfE&$N-J51( zF5D&5R9AZKAXH%73k$<^Fg6V1HF;2(uxmHF>08^aX|ri(Gv-E*mt$YUwqnK%A4A|j zp3H!B0qg#ZLS|Jy)h`DH`wWj@hB}gei0d_8NPcnK8Ot87x9KK;fM_-c+(lqJFON#r z0)oTcJ(Q|(4h3(NDEIXFOk64+5Jjy}(2jgS0Hb7T@zHqCK`&9BBkqpkV2h&;qQheD5 zc7@}{bBmfp)b)PUVkeZ(sAD+Uxe&D?&p1BgH;A2SDF$mH|7XzimJyPlIoSo%X1K3# zq9Y?2Y81ebe2gjxKTw#FP5%y+he1hCb1c~gR<2-S?c0uv1b{L_C$LP*=v*h(LSiax zBYbju9&3w;@Wxm^7?Am!H={5?mo|6+G#Q1WThW)*t9 z3Wf<)A*7!QP#QyffEzuvnB(t2;-Km|kY2H|KAkSCy?Ac1|9F$}DhS)5-kjuVS<~nz zGw7>Q>ijVGE8t>IEvjQW0Ww4Ph~a5&1|=ZOODXWT1W!c%BUT0h(FJ_|97+A2MenX9 zlJm2vVG*Pzqn}AxPJvUrW-nt3qu00tQnr&ZU1N?-xcociI~t9p#;d4XnH&gN>t50- z@V$PDiktz+qIA|qG{dXGfax4ijx~-C|6JVV;D<9%cChb z&+@YJQtXN}!JU~MQj_5aD|&zDpq(ouztI97CwV5Y?VAL0U`P%96HSQ%uuOPU$Dh%{pw%uiD_J6zB-)$x=F z(T40z(2iFC~X zkmkF%Cwd|9AH`;m3;?V-e>s}e#Kkwfj5Sq|}RzWHW`3}fw}-Z~Mm zAH}FRo}gfcGO>=&e}R?zoG=@V>={WpE#ixqjG@$`aOwxX2RJ`Yn`Hry=jlVS)uK4i zieckuYDV@_D%%&{`oa;A%-AT3wGfBxnNyC`&m^@qmjNHOyJ%#SJ@y;DUMqfUgNa<> z@FI&L5-9!B6{5Z5!5VRYKd=Z+V=!NErDk~xAyi7i%;G|yW4tPeS;ymo0t7)2Sz9C? z%p2FHDECeycrlA5^g&WQKh_grr8Wo(T0_h%)bgL90=G;_G|NbRLD95}c{OX8NA5I; z5(o|&z2AVZZNZG7*90id#xbz)con)Qv&oezq`}%+AP2m(SCg1^ff?y<3vlT8Uo;^u%S^C4$6%Ey}M^OO{i_g_`u|Ha(g zgO60kb!ZR`RI~Hv)V+=?6Tp>oZRVH&sK3gS>QVphX;vLaAT|_QIPIp!5Rw{==Cb zzR?e!7iPE{Tv2Go9F8q4)3&vKqX35iL04fvUS0#Js(F2-FNiUgLjSo@u*3Q`5M?(7 zdb)O8W(nyfW)R}p?+2L%vJVYZz&lAKih_RNbmILmS2w|KhA6P4$I;|G#Y+i^7RJdD@Jw7&@ zS`ZctU>t~|4HkCbHi+)N*F(_e@qb5m?+fbg|MK=fiEZ(wG9ZkL&>67UunY6gU5I4~ zz^r1}pBf6_U`z>nWP2&oc8?{iEa7At%G__=bI^5_P_x?0yx!gGV<1X- z6^2DV!X6?frj%}IU*xarArmW0UA7y_gGTqTM|YJnhuh0Ti+UVWi8A3CLxrNThm#dk z=6<8SLetj6&95x;cw|`I|5guG)K%v7XZzwo?|Pi9#3GS{u`)tzWw@9w*{6BV)wW6dPt17TN8g`%OOCR6vo?NVihYP+#^%IF8~x4J4c zhdXNXiXQa6M=aKzF)l4=eBkjUW^w-;9ZP4mJ@9;4xj6ihaoL<(54_%WEgtk|$Fc?Q z9(W_N(%=wLS1NocBFvQ$%*nb6-9s_2sxrzyVtMuGhd#pY%4p5WBUY@v_0V6}T@^p;conOm79gVfidRl zq=u6#x9fVPiB;7jwnwbmHM%!wba(a0!zWkmE$Z!;N-i0FCZgd$V{dSldCAxtCmRm8 z^@ikEEgAnPV)fBmy`e?jOD6t#a`lOKy!;$ zQyX3sJsxn6Tvl`@a^vg9$Kg-R%jVoTweiok#{*whEt~f!^2@(&Js!01UH7sDf1djC z)4Rum5xdUn5Vgt9?TLYitt(|tZ*tH-G4iVG7WqdtvBx}#5T328(420fil0P^*vl)U zqc+oPo-(YmwCm(Du9#q0f(AqIART}9MZAGfD5 zF|qaa4X3yI>z|qvtLs;8kJ=VA=4tHcv-J&!Pj3q?emXRjy`u3<)ON+1r^B*hSFF8p zdb{Sx)42TV73&{G?dX5|X?)Sy6&wFNy<^b(rwLZ}%1sWY<_NcEiIuS{H#42h(fVh@ z>#A37^*8N|9rG-y@$Aa&n$Df^#m|yAu~#)mn|39wc{ZXscGa$tox4UJd6v>ry=r%+ z>8r7~pN(ugyK3*O&aWoEe>SR}-Oy5D+C9nbm(g9Z4F?)JcW3H<8FQ(+;ox@Do+&Bk z#@;+R^6;jr-YdRNHBFXu+y;;~z(iI(qF;=&VEMCj3@9>exed*qrOcpEvVGI5^_r<^LMz`Y{S*hTBYM;o_CtVK9D%9sKPGzG{`)TCWDd#7-o*I2dby&W1 z=J_;l`!QWn8b$r8^XUPRW6q8^tY|oNJ|nDb%=vVUa_#l=nc7ohF3vct-1x`&$%F03 zURtD4Z5CX}8WK77%F4s4?dl8J31wriZPloErCgXY>eSd92M??F&b%=73;S`mPHQv= zR$a)M969cXYlk(54_(NeRyOX=Lyh+6^$U5kPmTNO&0+0{KQ2sLXg~fQuGO6sT+Ck_ zIsU%O*Sa(6i_@2tjeqE;)t^ndSg`uk_(!U*k6f6(w{YVJk0%iUM=vkmJ7fC*&u2+H zj$Yrtcjn%?p1)2C_~!QIy|WH~~qlkzMJjt(bS>zusW+ykF6dY(N51l9Gqy?UGyV6pjIVPqG zn@@SZZdp9&qnK9~cv?*FuZ#}&p;t7YmMHdD#n1C`*%H_(P1;{Q@|X|P+T0mZuz$(K zk3PavfoJ6P`)e}8eci7%pHUy!Uz<12*W*Fpcls;)m(Duo>-Br{cLQJVU$)?*ugG57 zWuy<(RfPNbIPdH-DGn@OI?vC~SK4h(I#Azm%+FuBvpcTfz>19@{Q@JUXNT7xSh+o1 z5|q62Y|4QHtM<;51gA;Qjk$85;qWm@XyMLt6J8%!ed41;Rwg}fp<5fzg!?O2>^z^L zXkBx0p1*2~^g?!0>)IQ~{57pRFXR@quKVeuzwVUu;`I8~^^d{>`d{67apr;64KL;e zgg=meUwox?M%J*HGj;a98f8To&odjIQ* zBz}Ux|2fQsj&gu1WMx9IT=ESf09DV1K7*`|DMsY z>|JNZJbKtOC*^YR)hY7y^V$2a|1fjL$LcMrX&axdK0Yov``a5kuN{jo{N--##)G#n zmp^_~G+T%bJlb`8@5C9-8$Z1N`RAXXHePKyac%RZ!o#0fFBY_NJs6Bk`l(3kfi3*_ z<1e3%p78$d=eI|`ocrhFLE1%seEj>H{tLgHz3rR9zdoJ&_2XFi$8ihkt8pjhKH1>* z^JDM3Z@--KeqqtTPk(QJ`;FlJ!Vd|1r+v7)@Uj2d4gW!G`@)Q(e`x*Ep806+U%%Gg z|Kb|^&nM#iU(NlmWZc9N+;JEtIE{Ti)};;z2}j8cGz{(PGjLtX^T8}94nhXFhX!#8 zq=!!oN#NE5_z?-8Soo)Xxb4mmxF7}G(!r-cd`7^>3?Bo0B1i&Rxsbp_@^GZIr8nBr zhueNd+kQnssyO&)Y$^FdZXjGmD4r|g7a_UrC4YDr{5hMKI7%h~G04A#25@;O(U!+h zE)fFVDHrnZp~0jGM?5aUmElMW39bAmAu%|Tf%mh4zX_>rxd8wj{wWF}P&@Y?j)vJ@ z3HqG-6Uaq}gj^v%Fr*8fCgSL2972I)pdV5h4r$+=OyBj4D@3BWK-3Gxdq7noz&$dA zv>~hf9ddzUto&5uV=LwfX+WDoWKmX)A$!`(^6nAW2ZxBg-{g$!Bt^&|Z%2Nl4p~EF zK%`5!RRvBq&8R(OG-PJQQ3zKQXN8|UKWma?zMe1G z&i@Y{7ZRTzq7eom@$aGrGfVNn|8g4=UL@Yc;rro-7iRy-1MBnW-{0~u)}6OO82N76 z+us0!_S1*AKmSBy+)tktzFm0N1>^p;aN*Aj--kh7&KibryKR$>q&lqWHnmFg`)|CEQCgWkh)IlbsjBhWT7U9Q z6(@9iMfCK#^@%&Xo^BeuW>B!Ra`UOu~e3F=vYME7iw)?^K%Zb51_gdy$8mYPwrfA_X_{7s+ z7ny?l5uJ1n=^K9bE4f@g#p`?>Pdv>3bj9|Fp0-Ie>alAtqoHMax{_Ssck{oM++i^{#Mqwi^lXonq>-*cC?IF`wSHVJt@OnO({=H-EM zC%v3!aIPqADmhlfiR-}RLl~CeQTq?y)$O$%NUMTJUV4}uyl)4=bO^T3KdbQ*)(6Zr|inv%c`-~ z=zP97M#V*jEhVFU`#AJK0QiuyGuIE!F$&$$;nzD;ge!wsMyz&c!qvcXEMADtgF(f*r%& zvuyk8M1onjxMtH`Mb=``7L%|5;)v#6-mGCYI%c5v$Fe3=SHOr&_b458TJ-XSf@p}; zX)wp-c37~Izjj_0rh##^2o7?JPbazW8Q4DxlIRP!N(@_ zKt`_YBe>`AA2QN*%8^uM(LdoqT`BOs$XWUxanNMg&g&d*Tqhpf24 zP8?$=GMD<9p$Kd4P$Y?|L$=f8tbP!^ltd!36yvC%CJb^U0hdd|JuW?iMsB2^1Zqbj z+zffqBCO62OujJ?DV~Q|6B3~)GmRu>JGkW+Q;I{D282Zfn(agw@`I{??_g~>>1T?l zLnO~=2PM{t%$O+$&U~{s+u?zTMb=?e2-3Qekh&g+thoAoB=R#W3|2TR#sMnT<%a

U8tM@n(-T|_iKQL} zcnUaa8rv%rB9_^X9Ey1neSUPnj(T8qC={{k5%%1JK_pNBA#q|j)SpK7&|ZJU|Iwk| zkCk0%{-O&*zcF3X+yait*WOTLz zcyLv|CNypf~a9|LLg*}MDw74&rD<^ zfsHwAOkrarn|cZ5+L)=%K~VGmXC~XD|HDj`_AkT#hnehSXv9PI(BVSV$HqyYX$kyb zhYajZpy{A$5hOr{`W$2hc7Tk`cC3JKD~^KUHADa*ptosEpu?>2w$%>^=8o)_BW&!; zKb8a37qMs`DR7Jr;@3k{eK5p>Obi%`vO@$kgZ9B>s1MsulvEFI^MHzU{!AOv@ZRverI}9pFlM|6+lC9dd zWKaN<2rLQN@}U21!zhYZ@3$XAI$LW{AnHR~{cO}iF(OE|6$z1jy$UTrBs{INWg&te z3dAk_oaTz3nT4d#94M1PPW4+Mg#ojASpCfPA0a!|`tkPW0~l~Myk$j%3t}aqm?|8_ zBLBLx|H&fx;MJG)4~rb^!yN46f9wrO=XWj#8#pxwV5vzl~5RwVnnfmxgdOdW}Y)R%ar;+rOZK8o^L_(~Tq2s?|1@ z*66tlY%l7$W?ZWw$8+?0g-U`&X|-CJBRn4!Y6?vZ6{)pK?n^?clW`XiGPzp65QjHJ z1kgkJ5?8AEF9T&NjT(3hskMrMDY#n0$|mGmt=nl_PGW_GDJ&72&fU&Y=w))j_wX|R z04`H=Md6U8%Eo@tp^>2?xk4M4OlVbF)>)2HsZr|t+Um4{BZtZgQh-!$99*q~LuG*K zraTVNMCEn}S1Uu8Aae%1r*ISCDs4y~q?Gr;^?LnQq;;#pHFC0w&}ud20z#?QkcqZy zoQtjQ!xgwr7MDcGl?r(nQuAGKh0=2j)Xsd4qgAPug8R5u&0h@`6z*VLA@dYL>H4$K z+4_(*NHfqCX>(hllk}1{TV1r=6_ALlAT+=Mrw9e)umk$b8M4wSP4oFyC`S|5`?*&` z3FtG{1P<_*%I!Gx2p2L^Yu$E0;c*xEKj1Qzf>KPr*eO^k&VlS z%BbWaw%q5lrUT#V2bMzakWI)|T&_Cea6A&K>9z*Q755sNvf=LV3pP4smlArt4w@>L zYXmEh{)j(x7dHlKpYavP)(L_@ez+}R$X%q3qmUA&9$drf*o(^*>U0;6SZZd}l%@(>4tfCWa*@ij+#yz*DGnS{3Vxi$W>atJFrmM`Wlm zRHRhNs#bFp3XRVECnQlRRZ%BVMIba7K3Ya z9f3r0XaZcJ_2l13zw>V_rK*#oP|D=y3%0^E`i#YdLZ>o+;J{UpF&Ca`HQhXpLM~T# z+e4W$r8F4(9w{ZogaY`j9Y~;4lg_}PRkL^srAnhS9mN(PxoHh604X}2v!ZYv=YqUL zDb8cL<4Qe$C;=HuHH1o~@YEtX>zODr%ornrVX2hNDd~sn^paPEOs2%d#Hi3PY!t3i zm=9yqrEj1{GG*siA)|49|f? zUL}r##s8H=pb;=Q4D#g2utZ~$Ia#ETYdj-?SPHHZxJO<-PrO2!Ko5E8m;Lq=7KaCcY%Bw zrjX<)R7%~`b=aW^8*!O-=S;XQkL!!;OG9v_(jBpR z&;zh>LxyscdYziJ&?a4=@}vfP%pJjzDKzro;eN1XTnN-xDEqKVIWT#t23~?L z9&>;jglm*3M&K&-bbpRoEz@Jd>^hhjbZY5(PC{r{V#yM6QBMg{vwk5!R8PkVnO4sV z_5k(?Rf-fkM!+_{&el?WIMNdw;0!tW8;Ed~7NUALB9-_(o;=Fzz0M*sRBHFNwwHF&Wn&KwA?8mR`y6i!pOJ-#H+{!&f=&RPazMj?}Q!>CZn#~cIN z%Hw>+r;w^?J++F{v>rsUs=JZ^z5#ry9ORxxX`abZ$@GeCwNOC?IlX5Te-4w!;Y1om z%8sLSI{^hw7ZA|BV>pCTsgC2|TE+CMxK72~BE+G^qioGl%R>*?A?=_vJ9R&#c>W~^ zhMzV&t>k{~F#_ZnT~0_I;cB%f7guP=P;u1LUs!CQS0X_VB?7||6e6WuCI|V`sl_#F z$tzBzNGr=0Le6rX0-PFPMl>JgDfJ4OzB>cg=zGhcwOSSU@ZnmzWD2#P;DsfG4i9Bz zf$k$uVvyvQlHWkWvnr9I>H_4Zk};=0D^xPBm8a6mbc&KQwm8yZ9KJ8AjOt(T`n?OoLc45?5?IQin+0r?FwORm5M0W4|SC(0>Xo>wBbO zWLzjs2MVZ;>yB&nf^$dUT9Wb2E%;zW- zz!{!g_*Uw724bf{Zevq;Fe9jx{79QB770c`xh5nBW*0rPfQxCFbPfh0h5JF!Y_ftt zR_U@2vDg`rgj%K98D|>=dgiVp_K{gnlr)e%JT;6zIWwOSk9&H+mRubNV*%#lt55?y zQ|bi5POVUwLvf|-`9Tl>YMD;jgt5s6T&^C@$6PWVU~GuG$Y%DiSqID4!H?rykufw( z9SRw%L%g_yjHTopkZ39ynFK;dQDwGG6Uq<>OWrvV`cbLS_HIE&Y&cB0GMMKuVaQFG z9Fqpy(GR&mAhl>YNOG-Q&YeL(2Mk|>O)akhWtBUQf>>CNxK>u%Pb_83Jm@H^GdV6~ zD+iJ(9i2Tj2ce}RU#01 z8Xd$Esd6H88ufl0solr&Vce+Q)jSrPrQQ||`jI^36x51aC-(1LkAW(!CR5EPks_3f zNZmj5=3=2C>y1@z5yLU_eDU7SD04rXf^F_+;gUW)4G47wJ%S9a$Cx)RSO#Ne^FT9I zDZ7XGtR#_Eo(bfLBT8PAshCT)oCEx<*>e+Vr$42QpiOGjCuo6_DIC|!azS^e2f0Yp zxJJQEu`nZDS>(T9vXRBjC4gtTAF|le-w5cZ+UK^4#XaKy8z?hknaKp9(a7lQ&e#$p zclTkt*yen#GCtn^={%4by12E3TBl~daujQkn(pO-W~pbcgU2Gdn4(>>V>ue7LLdLN z1JovI8p36orYsi_C6UGZmPdbuw#4A%?LbbC< zKjZK)CFnjfjgroHCNyd#)1Sh~rxo~!gr1vE^O1ttKpB5RnhPuT*uiLbUqQ0i=0lhZ z{gb0QlbnyV77Nu5!%DA`Gs&cBKdI@dBLkb(BMr?a6pIkjG5LhT1(}n98!o^EsaL!| zlId>RLy>f-=F1EM(%@})7!J~&G zq>YEX+)CyO*dY`g0j`RlXUEJCVxrn19nsQZ7@Pir4TMrMXK3;1F?ifw%jTUMZN1UG z0%_fEu`v(kYpQ1=lMCGqt2$N2dd@I&yh(D%7!9&Ai>}0mil}gc2v3# zAn#-BUUdndTta|qw8s~OMI3xu#m;0Ps5J5pSFXj2&t|+x9H>9o8S{}Qn_B7TBuA@P zs*Ur2;_lA~@fva!#%6gCAVwwj9B79!b`mCK0pCn`N$w+5YOO!p5!Ogr*@X{HFOe)Z z0p;SLBIvb@ly_YPgKOKZ&ZVG{m>oelDiqHgq~26EnX%q9hjbA?s&W=9xh_b*=Tv7f zXhm9g328ZqWKB544+B2d$L>J2*%XUS+w*YaaN5HW1RyolO=t`QeNiWmue0;YaoiJc z8!QY)i~llD2T4!xBzpxrkXo|0WP!;d{?&{Kol<^btCXn8DW z=_c%$Nsjbh6oI`npX{K>NS;;(qey~1eMoD$AS~cyDx{)D5|(ZcV<-q!P-&STXyb44 z43IFPZm>+!E4g0cV!@rDMzS+6|+h$&t3+?PX2kh zq*G6XRorxr7N|@9K$$t)W&>fp#uFhSNNe=9JOph(mphO8K+>L0jMdTdMq;Jn339ga zvUC>K9&!?CLiQ@cL6!0UibV4A@8NB3CKXEv{z6LkrvxmFj3wo_-3K`Wk7(rmpqD~6 z!g^nIs2V!GTP$sMH#vc}AUW1Qh}D}Uf_V^zvtFm;9_CK&370OwRcbE-$H*f8vNW0( zQA4;=7>V-zT8>7em79{ivUsK*NlKF!9ES{(AU2g81;R=NULZ~3y=mF=BtaZt5IuE? z4d)Gr6dlXS*_N&lEp@-IWQ}+kokCC-2^LM=XOrnAjQJYIhOIok!vA}&`#1uo550_4 zDxL2(P;vuTs<_`_1Co;1UORvV6wCj>)hcF{H{}6x0@&cV1Fl!aHe*a5ZwItIDSteO7Pm}?idh?V3(7!)OzW*WG1 zB~o_`0aCi}<`No((%p}PRfoU|QsYiKSw_V-+U@z)IF`)efRd=E?YR5@Kw3JFL!A_G zjG?MfdKA}eZ@DRb1x3iYorz-8~?I2-7igFh`}7D>^~&S$4*9Fg~uf|~#5%RPuP+lc6=^aMq1nSUF z&$&(U>WjcFvE_D1=XRnNH>%BZ;oKTkbQ&W60v*HMy)R6{Dit$Y0LqJ6MGn#NXoEUtgk4pt?Ip*` zfZW?^Bb$%|WYb;PiF9--7#|eM+P``>CdqIziE<$X?{XJgV$H9qZ=JZKk=FDTq*ZZw z?hu%)wft9`Sl(#`^@Yy!&Zt1T;cJ09xh)twyMp?id@h7R{k<>Cg={oFAU|R3lq1Y+ z%GUoIc+`7Gv$3g%WK%DRxb3#LUc-p&>|&0S9KBAXrBz&Y6)XhgtIBO1qUVMDB3|$R zn8Gz$OAn?%irlYZEGnu9P)g)Xn43=}8=6Qz_AN=FZh|WTl5(kij^_Kl*-abFwUEW~ zsYu}4{HzUvJCNX!o8ToFHjlc1o!dd+U;_q_qrk{! zGt{Yt4sxiKS^+EW-#Kpz9R6*(W-mlI4>lnP8Nyh?{C14++thBykzKOdJB6bTj2|QG zz+Fb9cCdu$n>rjkX58!OBU+Sbu=lAkM3DaL^X=Hut(!{OLCr08j-=nE2*=R2mJUZ* zKCg_Uz-9Ja^|iz@uJ)calIs7Y#oh^fbE(W}(8rgjoD4EB8b@%9r!kX|-@%XZYdTF2 z4c-qIq9e*VUiAuhNsJPgyCf$LHwi|LpUz^&WbN-{#^+m1t`mxSI$cw({0i4eJoy=6 z`bx_gx5*rpUe$|1BXg?)S-0kNA@xCRi zMi-F&YmRNI@?V$J(&5lIr=7Ihz>6pi7&p(39oSTv({{hQ-@ap|I31H}H#GRb`2xF;gV!c432{laVh$q`jh!KF_v)7rM}LjL z!j8SUe=e*YIoHTe@sexg-+7b`Q*`^Ss8O7gU9C}mZ*Y!NU5@d+pt?39?SlH|__8?7 z4>_$|?cEsZnkNNV89`2J4~ zF3Y2wO;OMx+tMzZTrDe?N4w`2`4Eh~)Tz*RLigy1A?xksJr6-jtM#>nWoxI&`^^#7tn&@eh}c}l~W z$@)bj$4=SP$&AajJh(9~uR}0ue8B~^>x3DXQ$|ggc|GIigreSUHz&^fYLZryZy(!V}CsQ zaaubo;7s8#lX7a}3$4#pz&Uv=yyNPpO9PjhRyjPt8KhJw}eaM&d-`-v9z2N=RuYX?f;rVx8 zEd2C$pH!cr)Ov6c7Ag_+Gg6&|ym^eh&gVJ21j zR0tC?*ut{eZfWZl5cFiz zB4$c+Q-xRclcuVmqk&s$&oJw@EIZ?ny|q3*R=RCvQf&6NhKX~Yu6biwyL0=xytCOm z_80&4bjPNOpl8in8>T$l*}Q$%vt7FnKYR97%bB2Gb|1Vk<(EBekJe7zd-TQGsr%wi zd}0T;bg%~m@9%V<8+@QU=$qiy3;lojwe?a&-#rJfCXLHIbbajHki)m9eDnP9Hw8cL zu~9jst*3fG=#k!rsV|N^+5XjwqrV>h<;6EI&-9yi?Ds3<_8otFf8D+lA71}BE$!1M z$NY9Xr(yXW4(EzwC&_^I`6tPKyIW4O`|W;t(qD0>K1VvHvgs=knY6!tV!t`1SYi2mgyR<5GlE+>Fc7X+^3l=6=UjSK|i!{pKo+ zvo}{0hlKobZN#YDKdz6SyyuS_<7Yqr<7VpOki)mqR!lg2d-9eIhkuybdiU^;Q@`bE z?@T{8Pd-T>#ng_U`PT7yOG`bg$GY{@uMru6gfzDg*YuyI-Sy z@$Nz0kkI!JSB~1au6K3X#v_l`PP=$y@`l+j-ap=Cn{ND{wBi4Y9dwuhPOup>{@JWs z+J-S_a{V`N#Qis)`@CECUuLfVx@lMEE2wcDCOCk9-rDWrhhI1ke^aIy)~Eft>stgA&6y$-@nq7={k>WoQs7YW`Jk z(Ai*MFY^q`ZKy0d*)ZWww0+U{NrrFQY8_ri#~LOz-BA73Hq}5*HuN{Voq2CPzjLJF z^78SYBHyIK4tzVH-~7;ELs;Gx?AW?=uo7kF{~N|88f4hL=hhdq2AfH%-}y+xt2eP@ zD%u7BK^~%k5RvUE9h1B6SLja97k-UXB!~;AnmK5Tf zQpk5i>p%mm9T!^Qe-z7=iS&l><4FzTvm*evriXU{y(h%43@3Ra>o9=Ed#Ama#SO&Q zjg<=VS;M46`toGMtm%EZ_x21nj2gH9+h6w%Hf-@d@^Nw7IC3tNsi>9Pg11MTWAMaDQW>h|=HvH z7X>f=9;d@md`P}%guyhV;JuU70O_74Lw8h#lR8nm!SM4v#}zy6LIUwiNl>+0s&8m;tYN$)KEU}QtOyi{iLF()r$`JherebHo{i$l;Qe+fG|Dwpiu|k*hPHk7k81+M$Uxj`1674 z9gQD>I^k{rgY+ww8ty+`b%4VUg>Gn9KtB$X2cj^t5m$Nve;8E2TWh>Xp8_RjZ#Z3g4-+dsbRv)NlH#Zfp@rEWSJ>arNB)x@Kz!oY##T%L(4Y158H*Z7T zrg!p3q27kK4qr45TjfnQ6d`ZJ-ouj?-ku)<1P(4EW@di+6 zU$O{K76W|qg_mJMZs(^1A3T8vytr*BOj-nnM`$P^fvS%3My3i#f-*zEIe!TG1c#8Ejc7kN z)vr}-aB@7fz4)z?+=Od`$y+Foy9xhQOj^+jz7=pmSx6gl3)hQ6kipI1#Y~C&Jzi`O zcy{*=j`9b>7i!5$e7i4w z0@sQM`vOhh`jBmC_GJP}xQDxiabu7d)NgrQ8w{#S+}}oaN)#6(5*dEEuW@gm8wPOM zHl*ZN0`j#>vpt%U$2Oid_vSsL5+-Ni`w-HYp4lUa5v$GN3qb8e0tun*F z;A?9idFH0#j|KqIcl$zyzxu`1Au-f`Z%8A+TDXmV3Iog$2wA;tc-LlE!2#F*Sjz~B ze~UrDyM9gv2^qV<|8f_eUUPhNm1Rp-?+lpLMhqhtB0HSm8QPH@i{qiQib_gZV35gw zd9S3@p63%&Co`gQHiHvwR-?gz+gIn3b;)R8Ie8nbggD}KCEqtX>Rz1)BWX$Oc-eG2 zd(0)!ZfoNHNu6xQZtOwcy_4lu4wkgF=#`xVM<^Gbz9o8ay4qfuWoWiMa9HZ0FL>Cs zJhB3Ldd&FsUPqasiXJ%cRY`_=h4YXhmc#SF^BWbW4iuDvqGZ!IN0IhaLs82llhrvOes8+2 zz|N5g9^;dB`((LeAG?V98BaHxhSqbWBYC%EJqWNyjrsR_I!`b2whJBKmfsWMfb;i` z;K@#(S{>#RNEF%m+cnB8{bxK$+!pJAnX1ppdv%&ZVZv9SL6!n*Z_E{x_J#Hsi{`;XbCE zkLNAUmdifcg*ms{ET;lX*F`V&FjewO;x_1)-D#QrdsnTO7WZi@IUOC3>vL{J)w_rz zaBacE7NaWrik~*`PK(7^Y`3m|&Ld6%G}T9&^H-ZCvb)wppYyP5y6sP-~A zD;wz1raxVA!9&v!I^pOdGTA?Foo?pqhfkfGhc!h^r`6RXb|!68tO-ilbxoSQEv6}U z)!7k&DZ6ZUpRL@L@>RtCv8LFoyGHIAf25$d`fAXKwG)q*c2>dW`Pxa{3bmskWb9X2 z7j~tbyAhJqrrB_R<tAp=k_4|+>QNdU3HS74Z&_fBbqh2 zrRCMGL2<1*>AFtxdhpP54QmvgIjj8R)@r2VuIG$wPHxTQm#K#~C?~I9uP@Y0z1ljk zS@*|U7I&;Ft7)ql7=A5KPZ#$fDkRxI`TCqOtv7ZF6md6WmLJW`c0QcY+SvWWDrvH2 z#P-bWtA}$(Y#*~;R&r%gP_qAs=J;|SQ}vI#^L`q(;jheU7hOI+jE`Jx+}-^D_4Xxj zO+9?4`+p~(#ij4p-~aW!e3)V8&YgSDJ$F0z z%(>@VcAMg|tTzgM168+Ww7jxDwQ^6v%j<%-ys@KxSM$sI=T_7|7Wnkd+p2E>4}$}? z=ikkn8hb^}wz`Mg{`A0{$16^@zLhjzde?T#mmk;{r@Xi-bJp&Hua1>OBxX$AbL{3N z`72OgdtPDAl5LCwAR;r@99i7_o_{(&AcY|LLCE@cOM!@?DLhtg}dRc?!j z)i_p;MXglab!_SKaoM%+=ehNVKE>D*9+fC9WQOj!>gsRXb*poDebxHHmv!5mZ)Gft zoT#-OS*bQ$FOAdLj_g)%t6(Nfy5_r6YF*WOPyf1QJK~I0>+=@qS3h4L8WL~nTRwJ| z<;k1{$DWnMWKUf`-TczCZO4pNcj@nXz4J5WWy?>#w{!E6=hy74*fV{>u`M_Dq&Dt# z^bhXy{PCWvFqDMySurkq?i2f#E7NOZi!8^MR=lC{en3a;efIgcQ|I2j^2vn{x5nIG zzpHNN)1gs6^@~rjf;eMzOaaSr#OnCnD`G#&PJQe(D)pwvC|Di;=E>rsYl>%MV)il> zG2e(nYl>qLvjvMqeSSF32Az&I=n918j0t8fD#|#K#P`wM0*bsuQ2U85Qx+gbK^_?o zxh9_sr#W3N8K=_c7qa?-98y6WwfST*VGvi+#@u{Nym^IW0%a%?*U|dCA_*f2SLN$S zBwtI8rMX9iz6>$N##2B8<z{nY5CVprHXN>v?qNWf`wX;;7eY*2G&Mu zGFhLGl=AZg9{vDQa%8WFcYwtyh-;pNYAljWAas&G7*@H3iV$Co`Y8kuqp?6d2D~ej zRS`MjIh1~)I2N3j%uLq`1b;@D%!?_*M9BsSmqoIJnRhy+lrc}-g@WY3#7>V?^>77g z%#$4_^2i&|QVvsw0!caq$U#`NNuC4Y3&8`ReKgto_Wae3tWE=R>|ImB?Bi_ z8uC$1`C=m&qozy+DdTaHrMYzy6lS9ACGlar;{_*VsJ=szJ(54;U5OT|^p}Z3vO{Ic zEn-c1+FsPKx|k>tzk{d=R7q}1F=5I)MVOpl5hW>2=mLdgesYOmXIsLSqPiutDSx62 z-y{oQS6-UFOp0Enl|+XqxYDG}5qe^2sQZ=V7D7&ZWlYRF=a^}K5tT;Ps=~kw#Jn%; zn{BYe5Nw@e9@u}nZQlQU|KXx3*kSY&c9qJp+v&P*PRD#HC!>FQ>g09r9GN!}pRfwij7( zrNPB~7(SB@f}To{_=&H@<8w^I1 zsid^bY%ZT#QCT%@+VmMSs;g^iYG>9>tgmmdG|rked(ND>^XBu`CYufJms=c8XKR~_ za0An(eLs%yJ*pM*Y)%+Ub1xA^*8h--zfat;mfNgtXOf= z&9~gT^48mKTeWJ{?YG~tdd-@mxp&^Vw&kvM>+ZgL{f71TY~0k}zj^b$$}L;BY`ZV| z-hu7-4c>qMz>fO|b`Cs%->&<2@7VF+gAeW5`|!hmcx2zceS7!qdz47s(kuQ&J0x!6 z;hJGsIrMEp?5UX4IJmrVFijM-eT#W8V$<5Xt%J?h?Sly-+4kjwCF=&a zuUnomxUE1WCMvn}GOuPl8^$a$z+dMefx_vn-3MU4(CG`x(gZ4p$MG!ry>-$F4 z9c_18;h@@X8?L?&#Iaw9Q%^1yr|w=XPB_c%i`Lx>qL@{pikN~>?QJE~gi6y1eICe^m?*+gfJ2X?5C?}NAIC%-2616Ro-j@4vqfSVk&B%fTD+bwQLz&R zlk`FsLw1a$LsKA3>)KpcT(WvH6}D(bF{#MOXSD^ws1$mDR`XtX%qQWaTg^#n8fjFK zTEsaS_RU|(M{wb6>OTGC756-M|CBer`1ylJ_iXe$e&328#s8T7?j21NPLyvwx&ImO zxW`K$+!2%XBflbCGd`ZXp(mD@a=)i6LLc)^SVTe(KXu0gbDvmjd~6n zh!NJCNJOeB@-n#d9_!_Dl&pySh+>HtuE?6EiY<}f2FUmD8wRj5A~HO0$>zBVVk{T= z$5)ozMZLOYG9iwl<1r**7g6{S*P|q4z4DsdiYLYs;iRY-JCm+v`?%#rCz2n2JLAR& zjSc0;*BVwel=f9OTJGC1Q*lK~VYuq@X~}A8_UAn+OZtu-+QWTqJ0FfsziH>PrSn~x z>OOhJ9lBM?x2#|Dwn);~^b&F7&ClH8A6mcqopN)+wjRl+cT_LW(JE8xhHTkiJ#FnsqLPL-d>j@$2s&qd(CaJY4iY2|JqJY;8;DCbituyY;3Sh6#s@ z>X(dvrpQP~zPh$?$pZD#*7Ee-b>qk69e#|jnDEM@+UpmTSW;&7ysk(|xnt*TZ#T9* z#5rayBYHB9KdiW3TVhz*kk-FU^-vH@5AJcCb!bpE6!Orr=NPQgy>S(pA%EO|-RDmcJiQq@KQgRD-9i zUVcQ8y)-iR?TFNOSBO&wZbV~0+e$9l+E+%!?4~PXz8>C_eFP1WBiD}UCY=WXJX91Lu^Pv*#nFY;Fj$e2t?ANXpqGQ7~!OEsX zN!dje`=Ge{2-;HCi--qY!t=R!-i~*R-3Z#$f}jI7oIY|QoDg)LIY_)%2K7t>A`rsP z?@gXinq5!^LwOmU1_6jglv9+jd7EgD-VH@ukC00M;VY5G{3e9UVfUUZWE)b6LMM*o z-@%6IGGaGA&TqmsAv*wFD2OkY6cQ}7%co?;bdRYx{T*QoH&txGJEu^T;>8@=~Ss1d1`B;O7^#VaKSLk4Dc~BRVidI-?CcH6`|lB8?8ca!xQp9uysT z9RI}h7;GaWi&G((2wlHNo`tU=R53+4;)!Td6{d{rE2fKyaB)v@o;dlGT};NM5|Lz2 z@_{Ps-@*_SMUvCW-r_t+JYhh3Qg_JSahT*`FgRNR5g=}S_ zM95Bh1Pk($aA0dk}Ek@go}fSA;v-K$N_TFsji%4B3u%Y9K)5PC;WQ*^4 z*QAZF4g|_~Htu?7N5_kQUAX_F-CY$~cmMIk-i0rF9{=#vzH6#>{rStT5c`PKefOes zpIv2Iy|(V*nQTo=>|Q4I?G578rK`nf_O_nG?O&^ei+2C_R+2H_&8&zyCJs$^50o8| zf`FO;z#xK7KfF>+y9D=@UQYnHc`gk*eFmE?z;Xc^8`wK8mtDhR7fEhymA#X-cztae zw#p)Gn<@+1{9X?UKw#YH?XG6tAHXy7STZV)@Ad;CNdp{EyWQg_Q^|2;OD*64ZFaAQ zo#_j<1o>`30-6r+#udsExWH|)lhM*LyWdYPB-;r;c`aEKy@`~U!H<~7*=`rSXTdWw z=;l3=DG5%XDr#5*N2cT$;o-Z*$u}W_If+bh1b|B506>d|t?2~*vj>H#=lu>i;0lm0 zP(}m!f)rkZJ>sb1s&WPimck<#TP@&YYGjH+i#OTr~pibSL}~_B26EKTZ7lzZuiM%&{Y;zJXp-aX&B&8 zZ2nBIC$q-RYhq@hc~4BM0CovLap7OiPku!{K7TqqMEbnl8n&L3AeCuu-ob;NCb`;H z2v1_X&F*RkR21rmQ$Lezw0q!D6)c!WPKN(^7yOKY`IQ{`eL+0w%0dDhJemXIAhQew zg1dCE0hopGWR@N|nJ0(@^;NAbp*{g<&~A7x<2!xiD)RdV4tzyAg2Q02%xA}2)c|5N z-NKoOacXldJhWjW$TW{f@I#Nb0$_&bWd@Evv!_X)oy&u#-OO*P*RsCo@+PT4lI&Tb^XO{fg8oYU8>(cearyhASI7ZkWcP6= zNxiD3$r%Xp0kKtGmw;Zz0W0J(%L~Bg0ajWk1&7tF_)$XRd`f*P%R!NQl%+oOkxp?d zWvJy|pnxcIT{0S9O%U*S-LT|Nc|{}e%4xHqrP#a36|~;x%->Bu6qA~)clreUPax^0 zbS68TO?(S_g}H*9pKSKn0B6Pn9lduoZLS($GF8O+S$8v>8ncGlcz#aSK}z>D!S}(` zr5+BVJ)YYZ&~>$AVxAyxROy4w&AiJy<5RdT4F+!BAP`Umq;zzB&{#<8z5Y3Us_F2K zh#t}FCaSkGlRu@nuhMGZM9DR2>+7VOHY*?RR+Li3=K?53ytyaz2xj4&FuT6|UB zlrkRP`p}UKK`S5Lf8X<4$k)=qZmSchJ8YSAnSQ331m9+ED zltIC}Iy#$oD1l_9^`QFZEs}x4YA<{j0w)5)4uG#5&O{7h3r&{`&0H5C)j!kd`MvM- zKS`!l?jTs5l^nVsNN?y4+%;SCsBCu9lrh{1_}up7FMD}a`5{q?hqqMLN{xUgCBLI8 ztN3cbG5hWPv%B9{Kg^{AZQB{(ogQvQZ#%jW3lxHb%TySMT3EB+yqv1CsMi26%oET) zP1V<#*9(xS0f#ys_Pq51{I-tBTuxCY>Fp1>hFjY&Y9K~!zMRX2$wQVwpEVi<6`PYl&dQPL^c8sk*=lbE_=} z>DSo1fNI7X;3-?fN@V2BNrgmzV&?v2wuX0M*21VD%a_g!@D6Tap57Pq_&Z_Zfx*v| zR5D1(!5QAS^`Hua8jv8_=T8IbxXp=4=nJCFRH~NA?H)jw>Ha7lS|sId9`Esu+!l?1 zs?p4Mq4H`bl)&IsN0TR%)jJ*`5{s5zk71afE#oXFlo1Bp4<`q^c@6>?E>v>=@pP1lsLv zt>W^?L$3hTuNk8z`Phap(dKK~cydwFS~$wbIC0}~+FX&!D1cuV=rxm{Fi+B%V}(w{ z{17QMI_)irZzFk=*g^OK$-FFFu_;mmKl5!~RDZ35clK`Nj?!MgJ@XODT*3b(0hm2J zI;)+ZN>m-+C&ke2;l3a&>Wx=TlGn6*k@NLbJ=b4fa1)_8Bu%_t+B;4_ISfc%*eRoJ zz@&XIf?SsabPhid>zx`FNTlL*Ea!IwcxwrtK zBItInk9mQyUjY<)Uy~gk&CBTHr}@yY#8i94-bz)D67A}DUb^)S7Q}>RD zJOKC$@~`|)6yMGKKvSqAi!eq^jBA)YTgJuCxh-oR)xTC*&U;#0oEt97`iUevl2%0! zY{8x|vSUI+GDI>=>;}xEOm_q^tzQG$a@J*t+%Zk(|uk zF5cfFF~G5S3)4+gl_s_KEfvN2;Ne+ux0I+-yd_DT9*I|+0p~%#dKbVLd`W8<4v;`t zN${@B?SxtEGOs2ln6nvz>3>yykO@X71ktiHDig6Qtmpc}c`nEWWp zuIas-KYEY_9_Q;ya+c(~gMXvhGCNQ}2!F4Ge^WXg0#9!g(-gHpNo0$QX(QU{OH#C^ zl=m5y5w9aUk`^-LAIJE-(Ns+k7!&Hh=~jmG2`Pz$E(z)f zP4wzyv@ujTP(=gWVS%SuORzf4Scayx>02KFn%sftlxo7L_)v-AM6o3@rnYw;Ivz$q zV9`Au1Awj_%%d%nd<;J+ZbHHHQgwL(hBJr)H37+X-qo8y8Tj~jCDc^AX~z4HslQc$ z;lN4_no86ql%8kS)0xY~e@}z^_$CK{2QZeZ4;8h@Qph`Lj8(l$D1%pbCqdQK9yBK1 zDwXAAzL2pws{d^zXN5#(R{-nGC1F}3u%?(+&57a)Q}2s__G?yx7l64wZ-+gz_@vM6SM1m(0Po{A=4iZ@9nsm7_FqNigV`I1>sN7WeneVSSxZQc{G zJ8W=`-4mH{3Bwr`Dba7;tNuG&n_Y27B-U8m z_P)5U(yF|^X0$>LTgRz?EUbZ7b)GEmpoAgkX%)QR8JdZZA^oXj){gh@UbTWF^! zXS_gh{`iftAeQ+$GN~qt(At-(I#E#u7thdH)P*s%$E>V{ndHZL2m%FY`dcylPh0zUDgc1PD@mE zyv=X*d52zAJQN4uH?-UU!;K>J8|MX*oS#U4}2;()8e-@{JxxA8u}Ub>n4V`KJbeX1DR zPfrU36tNNLPW&X*R3EU7eBF#oDbY#wF0Xg>7Z}!FF^?;_A)cR7RBNpvQ!X{tWjRUm z1M`Xm7SasrhF8pt2iyApEXj`Brk-B)Pm)g{p8}b2W7XB^yAvQDp_iE}xO-H!kbpa! zZ6znkLy6>_{1Hs3picRCQ6e4Uxfm*|1_gU@Cb~@PrjRO{{SRbq92OnjwRw+B7%5n0FYAFL7W-oJC zLZkkpr!zSTN4U9{{_2_E|fULs_y`3qR^`^p; zdpS_oy=)C?#TOm@_pB0vSs{@de9&#j_D4luI{6t!{i@W+xA^<7sr;NM>Aju#BA$Ft ze`ORiIeP0AsK@@N&|{gy5kyP6GTNTiN7M}xSveHhLe&JAwbNX7S%MtL%8!O|?C4m~b`p24TUR9J6Thv_e+6^ohLP84_p7G0U~aQ^_g~t(ou27&CasCb7Ujy?tQ4}p0y{!yj{|}%R7w0@ zKC&bwm-$lFyP2pZ9|b;CGkG|3_0gl;Mga8oewDgSp}|53`Yg6Q=xGWlW@E|H*t?B3 zH8;n`(g|#J5YuUmkvSfjU`C_#c!9EgcpS4ePRT(R1PFVdim4g5aBEoqso0}qC$kit zP7qAVcpA-nClzav7OjhYELvy;=}dp~R#Ut+A#rz9T$UnF#e7LK6_GQ#3r2uJT86trQTBK z8r0R$N+2zyu~ZAMKA5^u&h^uk-9Gi7GGE9VC*tZ8f0WQQLEG~XHx=(mbuCKFLCj@I zsJf+WZ;~8d{yXglH!M)(WD7bns0%{+MCjNLN5woHHTnzR2|8`;uoekC=?tln1U;il zc8;C`)5gc)*W8YO@uc_zKOC(7kU)kl!f{$jN`Cl9=a2A!`U#mZJ6leMeVYuYsbBsr z9#>U}fG4LH$!Jpg&D~)YcnL9n8uri{_ES75IsN6g|A6Dw58}!25BBd@km2uLa$OcF z>pT6At51KZAjh7*XX%H#a(~K3Mq!Ej!k{@9RPm=oIHeKin7q>RcA~e3k|=38J0Ip^ zvV<#p{Bi15#1OOQ@$3Kno9{~ zdi54LTP(hwlGN>J*gcdd#$qSN2Avl)ssVhj&d1 zex}T*-Cn!X`c}q_nEGAw4=(4?w-G8scii9+)BCn*^-+xQV*+CPC$!vQ2rczPMEBA0K zVl&qf&Nl{TPPM)KZocd2Ugy!nJMSjQ51#10{A=0l!UZ26S)E&da&`Mc3^Lrddwn=9_hb-ukr z^7<#0>x+UX|B_y9o3?RE@0ggRy~kheH?D|3-Zzw1y#)!xY_8q@`qqlO3xYo=TVEfT zu@&aAw|)HP_L}Y0I~(8n>@Bd*`f^6?=XL$FA20dlv%g>d&h9kJ@|c`8u8J+0FRsa- z^#_-wU$p2R(~8)z#?5jkDQ^AKLz$L`cK-R1cES2U_~Co*m|sj&Bn}LqSvF{jhQA6O z=qF>}X->W8M{(-nt@!5q8^?`{eG-cMDJq{(jRDT0-Oa}&5HX?@k!nmk7C?S~N^HfB zu{4ZYh!`nCX@3wOfjaDfSgpX;)ZxI8Klaf9g3s_X_Yrt23{vfIs>9wiM*O9TC$<*RhI^_IZu<}q*p~||Dsi|8=Roz*p4JY%Lu-H>!sV79K zdqqM*q*g`d5En_}zw7hDdjMHF9h9JoMRr{i@PQohM-ZigD&}?}8Nt4)FS0~}C zh7DIqSV6YflQe9Shj-f%-~oOx?f_`*3*a^`7;+9R!85_5ND+8-tp*g0 z6ffz_e0O1Xqo16YVG|VYEnX;3c-Mv5UL;p!7j(}%^HzxKIus8dXYJ6!fGGiA(0=VX zbcN`i%!Mgq^Hrr8B8LP6ezbuj9| zzpQ-0_4kFDg*<`_!RKXnwn3pbN45F0!T&0&kO*{PR%e5M$E=2Tz+afxFX88B_J8Wl z7c?JXzs!ZXoe4cJuTeE~E*D2V_*Z-k$%Pl@b~gCD?EcN3aYp96FvHPL&dc+6=p(uR z%jh6jhF(b1nb7m-`8RnWNYoe0YdG}0yhhdH|5x>%T?Ad2<2jGc%l7}Hh@rVqFq825 zLQ|B>Y4yQwN|>SAyYXGj+bNI$iw(ci>k&e=IaxVb+9Zt9XU2um58=KoH|bhJCFQEC zr`1myUTdj#BxVagZA%5maWilTzo{IT$LU+R5{_%(3@xEBz5bl%okF1L?DOed+3-Ei zp;SW8%^cUs;XV8hC4&Emg7@_k&2Cq)v9vC)L08pbEvpMy zJ(bRBPQBIMUGC!%*WBuDF?-4#R=3S%c6PRy-T4k{{Y)WF&{p5&uP|`Vrrc^rlV=9P zxXzLLjwXY-z-%-vtTeXy&4%)Yw$i#zA+5>=txbqy(G~e^_1a*AZaDwOhO_wwE%jQL z5ZCId^IHuc9A&j9MbZR^8 zbwxS$27M@9v%AR2yX#tQhS2jsV?(tAY2;XHKy#Vj*;t?7YSmS@Tis2e^y=!WODk$y zoXzLa-qelwB?0j83|-(wX_ep7P_=NFSLf4x-gA#0dAwKnMU z&n=rPXfw7r1s+=K>vAmh)ec*!>1=&8*L1d^?#}Yi?5WZ=c^cbo?z*;Lr75?r+vaxZ z8tZ3-(rvm3Pc6EVoW^=vN0ZytYN_uW&filPXex6x+sa&>;B^6bJ&Ja%%T`)~wpQ&B z>QbNy_0T*j9ao5d#!wv~-D+2pKqKPX%F4Bk4cej#gU~*I;jPtO5*VpdH(y`pZ!9VL zrJN)2LhbJ&^#5CJqBLJ?E$zC1o+e%0NIhMop3gkHSRK2oP-k@>Yi>E(X^H>W>Kgqo zXWFl{QS^-f`s~?shWiiK9cmZ3tnDG-*fi>cakhPMg=X=x~L<%jdTu&tp^o7`32Q28%bzvtwK zw)1cI;cB##fNNyDx(GezJijP^tmwBG)6R_H7tmzYl`m+luNtY--^3#~cr=pUh3&u5 zUD7?$zAi@3f20keFFE=8ykBcW7`HG!Ie)zk{RepDveuWQtptR=D74)R>&{&luz*** zZe)DESbO@HnsA z&0XHnSl0G0=&8>CReIcweu3Vq){*=!r02Z$`J4KK*Q(RHDuj7#q#PF+$1aF-vAOp5 zn5!Bf2bkSe-Hr7nIo4dWARk~Z?P|9`mTQ6`qaY_??#6X_hpju*Hg%XYFwPbQg*n*V zYU-?L<${$p<(T&bx#f(U)#z&SRJB`md7(5aYx1-et(DH^VM%tHAaCk9$d~0a47jqK z6+ zU+68qvKWzU&?mk-A` za~|P+L7bj3GgPY5v++Y0!}*tn`a>w7TZq5VIP$)!1Va27q5FJ#L-KfIz1E4b(+7Dg z^uE7i;&6VP35>&USpE-PWp{+i4_ZQj7U8~R`bhj=qfbb-w8~+DY%e4-Lx{g{;Tih= z6+c2_y6_HHV#Ojw;Gdb}|F`@E(#l5WAY8hH`1xn~VYoQ|XCfxnBf>n3E3Ry!KwpSI z9cS}1U!4C!Xjv87a#d*2vmnGjfe52_gkO5DOGuPEpZ`W7&{A)63IEX~ke_9wX&|7* zU=o&Q!XtgPkcmD-dWfh{dqj}%6LKx9a@j*SUSZLOdTT*xgmv7=Z$^l;Uz%!J>j*!w zhhB(MX2gAw|Cjti?+J^v(d|2we@HF~al&8`;v*38kY9_i2J94i)68F9I@A6_`G@+` zFGL9C1yg>J_i^XtLQJ_h{fOVmfnMZuwowk#4}Kus5PhNiN6~{sLl1?#5M{XjLxmoW zKO8=?9@TX@nsSGm{cwHY)lgQU(^Z6ug+6RS&>qNaYH!aBEyCH6MK*R)3d`@fFYs0J OH~tYnAR<73wEqud1d_G@ literal 0 HcmV?d00001 diff --git a/openml/tests.test_datasets.test_dataset.OpenMLDatasetTest.test_get_data_pandas/org/openml/www/datasets/40945/description.xml b/openml/tests.test_datasets.test_dataset.OpenMLDatasetTest.test_get_data_pandas/org/openml/www/datasets/40945/description.xml new file mode 100644 index 000000000..59766a659 --- /dev/null +++ b/openml/tests.test_datasets.test_dataset.OpenMLDatasetTest.test_get_data_pandas/org/openml/www/datasets/40945/description.xml @@ -0,0 +1,26 @@ + + 40945 + Titanic + 1 + **Author**: Frank E. Harrell Jr., Thomas Cason +**Source**: [Vanderbilt Biostatistics](http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic.html) +**Please cite**: + +The original Titanic dataset, describing the survival status of individual passengers on the Titanic. The titanic data does not contain information from the crew, but it does contain actual ages of half of the passengers. The principal source for data about Titanic passengers is the Encyclopedia Titanica. The datasets used here were begun by a variety of researchers. One of the original sources is Eaton & Haas (1994) Titanic: Triumph and Tragedy, Patrick Stephens Ltd, which includes a passenger list created by many researchers and edited by Michael A. Findlay. + +Thomas Cason of UVa has greatly updated and improved the titanic data frame using the Encyclopedia Titanica and created the dataset here. Some duplicate passengers have been dropped, many errors corrected, many missing ages filled in, and new variables created. + +For more information about how this dataset was constructed: +http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic3info.txt + + +### Attribute information + +The variables on our extracted dataset are pclass, survived, name, age, embarked, home.dest, room, ticket, boat, and sex. pclass refers to passenger class (1st, 2nd, 3rd), and is a proxy for socio-economic class. Age is in years, and some infants had fractional values. The titanic2 data frame has no missing data and includes records for the crew, but age is dichotomized at adult vs. child. These data were obtained from Robert Dawson, Saint Mary's University, E-mail. The variables are pclass, age, sex, survived. These data frames are useful for demonstrating many of the functions in Hmisc as well as demonstrating binary logistic regression analysis using the Design library. For more details and references see Simonoff, Jeffrey S (1997): The "unusual episode" and a second statistics course. J Statistics Education, Vol. 5 No. 1. + 10 + ARFF + 2017-10-16T01:17:36 + Public https://api.openml.org/data/v1/download/16826755/Titanic.arff + https://data.openml.org/datasets/0004/40945/dataset_40945.pq 16826755 survived Data ScienceHistoryStatisticstext_data public https://data.openml.org/datasets/0004/40945/dataset_40945.pq active + 2018-10-04 07:19:36 60ac7205eee0ba5045c90b3bba95b1c4 + diff --git a/openml/tests.test_datasets.test_dataset.OpenMLDatasetTest.test_get_data_pandas/org/openml/www/locks/datasets.functions.get_dataset b/openml/tests.test_datasets.test_dataset.OpenMLDatasetTest.test_get_data_pandas/org/openml/www/locks/datasets.functions.get_dataset new file mode 100644 index 000000000..e69de29bb diff --git a/openml/tests.test_runs.test_run.TestRun.test_offline_and_online_run_identical/org/openml/test/datasets/123/description.xml b/openml/tests.test_runs.test_run.TestRun.test_offline_and_online_run_identical/org/openml/test/datasets/123/description.xml new file mode 100644 index 000000000..5207e21f7 --- /dev/null +++ b/openml/tests.test_runs.test_run.TestRun.test_offline_and_online_run_identical/org/openml/test/datasets/123/description.xml @@ -0,0 +1,19 @@ + + 123 + quake + 1 + **Author**: +**Source**: Unknown - +**Please cite**: + +Dataset from Smoothing Methods in Statistics + (ftp stat.cmu.edu/datasets) + + Simonoff, J.S. (1996). Smoothing Methods in Statistics. New York: Springer-Verlag. + 1 + ARFF + 2014-04-23T13:17:24 + Public https://test.openml.org/data/v1/download/123/quake.arff + 123 richter 1 public active + 2025-06-16 08:08:53 7ede4fd775db9eae5586b2f55c6d98c6 + diff --git a/openml/tests.test_runs.test_run.TestRun.test_offline_and_online_run_identical/org/openml/test/datasets/20/dataset.arff b/openml/tests.test_runs.test_run.TestRun.test_offline_and_online_run_identical/org/openml/test/datasets/20/dataset.arff new file mode 100644 index 000000000..a33cbd81f --- /dev/null +++ b/openml/tests.test_runs.test_run.TestRun.test_offline_and_online_run_identical/org/openml/test/datasets/20/dataset.arff @@ -0,0 +1,863 @@ +% 1. Title: Pima Indians Diabetes Database +% +% 2. Sources: +% (a) Original owners: National Institute of Diabetes and Digestive and +% Kidney Diseases +% (b) Donor of database: Vincent Sigillito (vgs@aplcen.apl.jhu.edu) +% Research Center, RMI Group Leader +% Applied Physics Laboratory +% The Johns Hopkins University +% Johns Hopkins Road +% Laurel, MD 20707 +% (301) 953-6231 +% (c) Date received: 9 May 1990 +% +% 3. Past Usage: +% 1. Smith,~J.~W., Everhart,~J.~E., Dickson,~W.~C., Knowler,~W.~C., \& +% Johannes,~R.~S. (1988). Using the ADAP learning algorithm to forecast +% the onset of diabetes mellitus. In {\it Proceedings of the Symposium +% on Computer Applications and Medical Care} (pp. 261--265). IEEE +% Computer Society Press. +% +% The diagnostic, binary-valued variable investigated is whether the +% patient shows signs of diabetes according to World Health Organization +% criteria (i.e., if the 2 hour post-load plasma glucose was at least +% 200 mg/dl at any survey examination or if found during routine medical +% care). The population lives near Phoenix, Arizona, USA. +% +% Results: Their ADAP algorithm makes a real-valued prediction between +% 0 and 1. This was transformed into a binary decision using a cutoff of +% 0.448. Using 576 training instances, the sensitivity and specificity +% of their algorithm was 76% on the remaining 192 instances. +% +% 4. Relevant Information: +% Several constraints were placed on the selection of these instances from +% a larger database. In particular, all patients here are females at +% least 21 years old of Pima Indian heritage. ADAP is an adaptive learning +% routine that generates and executes digital analogs of perceptron-like +% devices. It is a unique algorithm; see the paper for details. +% +% 5. Number of Instances: 768 +% +% 6. Number of Attributes: 8 plus class +% +% 7. For Each Attribute: (all numeric-valued) +% 1. Number of times pregnant +% 2. Plasma glucose concentration a 2 hours in an oral glucose tolerance test +% 3. Diastolic blood pressure (mm Hg) +% 4. Triceps skin fold thickness (mm) +% 5. 2-Hour serum insulin (mu U/ml) +% 6. Body mass index (weight in kg/(height in m)^2) +% 7. Diabetes pedigree function +% 8. Age (years) +% 9. Class variable (0 or 1) +% +% 8. Missing Attribute Values: None +% +% 9. Class Distribution: (class value 1 is interpreted as "tested positive for +% diabetes") +% +% Class Value Number of instances +% 0 500 +% 1 268 +% +% 10. Brief statistical analysis: +% +% Attribute number: Mean: Standard Deviation: +% 1. 3.8 3.4 +% 2. 120.9 32.0 +% 3. 69.1 19.4 +% 4. 20.5 16.0 +% 5. 79.8 115.2 +% 6. 32.0 7.9 +% 7. 0.5 0.3 +% 8. 33.2 11.8 +% +% +% +% +% +% +% Relabeled values in attribute 'class' +% From: 0 To: tested_negative +% From: 1 To: tested_positive +% +@relation pima_diabetes +@attribute 'preg' real +@attribute 'plas' real +@attribute 'pres' real +@attribute 'skin' real +@attribute 'insu' real +@attribute 'mass' real +@attribute 'pedi' real +@attribute 'age' real +@attribute 'class' { tested_negative, tested_positive} +@data +6,148,72,35,0,33.6,0.627,50,tested_positive +1,85,66,29,0,26.6,0.351,31,tested_negative +8,183,64,0,0,23.3,0.672,32,tested_positive +1,89,66,23,94,28.1,0.167,21,tested_negative +0,137,40,35,168,43.1,2.288,33,tested_positive +5,116,74,0,0,25.6,0.201,30,tested_negative +3,78,50,32,88,31,0.248,26,tested_positive +10,115,0,0,0,35.3,0.134,29,tested_negative +2,197,70,45,543,30.5,0.158,53,tested_positive +8,125,96,0,0,0,0.232,54,tested_positive +4,110,92,0,0,37.6,0.191,30,tested_negative +10,168,74,0,0,38,0.537,34,tested_positive +10,139,80,0,0,27.1,1.441,57,tested_negative +1,189,60,23,846,30.1,0.398,59,tested_positive +5,166,72,19,175,25.8,0.587,51,tested_positive +7,100,0,0,0,30,0.484,32,tested_positive +0,118,84,47,230,45.8,0.551,31,tested_positive +7,107,74,0,0,29.6,0.254,31,tested_positive +1,103,30,38,83,43.3,0.183,33,tested_negative +1,115,70,30,96,34.6,0.529,32,tested_positive +3,126,88,41,235,39.3,0.704,27,tested_negative +8,99,84,0,0,35.4,0.388,50,tested_negative +7,196,90,0,0,39.8,0.451,41,tested_positive +9,119,80,35,0,29,0.263,29,tested_positive +11,143,94,33,146,36.6,0.254,51,tested_positive +10,125,70,26,115,31.1,0.205,41,tested_positive +7,147,76,0,0,39.4,0.257,43,tested_positive +1,97,66,15,140,23.2,0.487,22,tested_negative +13,145,82,19,110,22.2,0.245,57,tested_negative +5,117,92,0,0,34.1,0.337,38,tested_negative +5,109,75,26,0,36,0.546,60,tested_negative +3,158,76,36,245,31.6,0.851,28,tested_positive +3,88,58,11,54,24.8,0.267,22,tested_negative +6,92,92,0,0,19.9,0.188,28,tested_negative +10,122,78,31,0,27.6,0.512,45,tested_negative +4,103,60,33,192,24,0.966,33,tested_negative +11,138,76,0,0,33.2,0.42,35,tested_negative +9,102,76,37,0,32.9,0.665,46,tested_positive +2,90,68,42,0,38.2,0.503,27,tested_positive +4,111,72,47,207,37.1,1.39,56,tested_positive +3,180,64,25,70,34,0.271,26,tested_negative +7,133,84,0,0,40.2,0.696,37,tested_negative +7,106,92,18,0,22.7,0.235,48,tested_negative +9,171,110,24,240,45.4,0.721,54,tested_positive +7,159,64,0,0,27.4,0.294,40,tested_negative +0,180,66,39,0,42,1.893,25,tested_positive +1,146,56,0,0,29.7,0.564,29,tested_negative +2,71,70,27,0,28,0.586,22,tested_negative +7,103,66,32,0,39.1,0.344,31,tested_positive +7,105,0,0,0,0,0.305,24,tested_negative +1,103,80,11,82,19.4,0.491,22,tested_negative +1,101,50,15,36,24.2,0.526,26,tested_negative +5,88,66,21,23,24.4,0.342,30,tested_negative +8,176,90,34,300,33.7,0.467,58,tested_positive +7,150,66,42,342,34.7,0.718,42,tested_negative +1,73,50,10,0,23,0.248,21,tested_negative +7,187,68,39,304,37.7,0.254,41,tested_positive +0,100,88,60,110,46.8,0.962,31,tested_negative +0,146,82,0,0,40.5,1.781,44,tested_negative +0,105,64,41,142,41.5,0.173,22,tested_negative +2,84,0,0,0,0,0.304,21,tested_negative +8,133,72,0,0,32.9,0.27,39,tested_positive +5,44,62,0,0,25,0.587,36,tested_negative +2,141,58,34,128,25.4,0.699,24,tested_negative +7,114,66,0,0,32.8,0.258,42,tested_positive +5,99,74,27,0,29,0.203,32,tested_negative +0,109,88,30,0,32.5,0.855,38,tested_positive +2,109,92,0,0,42.7,0.845,54,tested_negative +1,95,66,13,38,19.6,0.334,25,tested_negative +4,146,85,27,100,28.9,0.189,27,tested_negative +2,100,66,20,90,32.9,0.867,28,tested_positive +5,139,64,35,140,28.6,0.411,26,tested_negative +13,126,90,0,0,43.4,0.583,42,tested_positive +4,129,86,20,270,35.1,0.231,23,tested_negative +1,79,75,30,0,32,0.396,22,tested_negative +1,0,48,20,0,24.7,0.14,22,tested_negative +7,62,78,0,0,32.6,0.391,41,tested_negative +5,95,72,33,0,37.7,0.37,27,tested_negative +0,131,0,0,0,43.2,0.27,26,tested_positive +2,112,66,22,0,25,0.307,24,tested_negative +3,113,44,13,0,22.4,0.14,22,tested_negative +2,74,0,0,0,0,0.102,22,tested_negative +7,83,78,26,71,29.3,0.767,36,tested_negative +0,101,65,28,0,24.6,0.237,22,tested_negative +5,137,108,0,0,48.8,0.227,37,tested_positive +2,110,74,29,125,32.4,0.698,27,tested_negative +13,106,72,54,0,36.6,0.178,45,tested_negative +2,100,68,25,71,38.5,0.324,26,tested_negative +15,136,70,32,110,37.1,0.153,43,tested_positive +1,107,68,19,0,26.5,0.165,24,tested_negative +1,80,55,0,0,19.1,0.258,21,tested_negative +4,123,80,15,176,32,0.443,34,tested_negative +7,81,78,40,48,46.7,0.261,42,tested_negative +4,134,72,0,0,23.8,0.277,60,tested_positive +2,142,82,18,64,24.7,0.761,21,tested_negative +6,144,72,27,228,33.9,0.255,40,tested_negative +2,92,62,28,0,31.6,0.13,24,tested_negative +1,71,48,18,76,20.4,0.323,22,tested_negative +6,93,50,30,64,28.7,0.356,23,tested_negative +1,122,90,51,220,49.7,0.325,31,tested_positive +1,163,72,0,0,39,1.222,33,tested_positive +1,151,60,0,0,26.1,0.179,22,tested_negative +0,125,96,0,0,22.5,0.262,21,tested_negative +1,81,72,18,40,26.6,0.283,24,tested_negative +2,85,65,0,0,39.6,0.93,27,tested_negative +1,126,56,29,152,28.7,0.801,21,tested_negative +1,96,122,0,0,22.4,0.207,27,tested_negative +4,144,58,28,140,29.5,0.287,37,tested_negative +3,83,58,31,18,34.3,0.336,25,tested_negative +0,95,85,25,36,37.4,0.247,24,tested_positive +3,171,72,33,135,33.3,0.199,24,tested_positive +8,155,62,26,495,34,0.543,46,tested_positive +1,89,76,34,37,31.2,0.192,23,tested_negative +4,76,62,0,0,34,0.391,25,tested_negative +7,160,54,32,175,30.5,0.588,39,tested_positive +4,146,92,0,0,31.2,0.539,61,tested_positive +5,124,74,0,0,34,0.22,38,tested_positive +5,78,48,0,0,33.7,0.654,25,tested_negative +4,97,60,23,0,28.2,0.443,22,tested_negative +4,99,76,15,51,23.2,0.223,21,tested_negative +0,162,76,56,100,53.2,0.759,25,tested_positive +6,111,64,39,0,34.2,0.26,24,tested_negative +2,107,74,30,100,33.6,0.404,23,tested_negative +5,132,80,0,0,26.8,0.186,69,tested_negative +0,113,76,0,0,33.3,0.278,23,tested_positive +1,88,30,42,99,55,0.496,26,tested_positive +3,120,70,30,135,42.9,0.452,30,tested_negative +1,118,58,36,94,33.3,0.261,23,tested_negative +1,117,88,24,145,34.5,0.403,40,tested_positive +0,105,84,0,0,27.9,0.741,62,tested_positive +4,173,70,14,168,29.7,0.361,33,tested_positive +9,122,56,0,0,33.3,1.114,33,tested_positive +3,170,64,37,225,34.5,0.356,30,tested_positive +8,84,74,31,0,38.3,0.457,39,tested_negative +2,96,68,13,49,21.1,0.647,26,tested_negative +2,125,60,20,140,33.8,0.088,31,tested_negative +0,100,70,26,50,30.8,0.597,21,tested_negative +0,93,60,25,92,28.7,0.532,22,tested_negative +0,129,80,0,0,31.2,0.703,29,tested_negative +5,105,72,29,325,36.9,0.159,28,tested_negative +3,128,78,0,0,21.1,0.268,55,tested_negative +5,106,82,30,0,39.5,0.286,38,tested_negative +2,108,52,26,63,32.5,0.318,22,tested_negative +10,108,66,0,0,32.4,0.272,42,tested_positive +4,154,62,31,284,32.8,0.237,23,tested_negative +0,102,75,23,0,0,0.572,21,tested_negative +9,57,80,37,0,32.8,0.096,41,tested_negative +2,106,64,35,119,30.5,1.4,34,tested_negative +5,147,78,0,0,33.7,0.218,65,tested_negative +2,90,70,17,0,27.3,0.085,22,tested_negative +1,136,74,50,204,37.4,0.399,24,tested_negative +4,114,65,0,0,21.9,0.432,37,tested_negative +9,156,86,28,155,34.3,1.189,42,tested_positive +1,153,82,42,485,40.6,0.687,23,tested_negative +8,188,78,0,0,47.9,0.137,43,tested_positive +7,152,88,44,0,50,0.337,36,tested_positive +2,99,52,15,94,24.6,0.637,21,tested_negative +1,109,56,21,135,25.2,0.833,23,tested_negative +2,88,74,19,53,29,0.229,22,tested_negative +17,163,72,41,114,40.9,0.817,47,tested_positive +4,151,90,38,0,29.7,0.294,36,tested_negative +7,102,74,40,105,37.2,0.204,45,tested_negative +0,114,80,34,285,44.2,0.167,27,tested_negative +2,100,64,23,0,29.7,0.368,21,tested_negative +0,131,88,0,0,31.6,0.743,32,tested_positive +6,104,74,18,156,29.9,0.722,41,tested_positive +3,148,66,25,0,32.5,0.256,22,tested_negative +4,120,68,0,0,29.6,0.709,34,tested_negative +4,110,66,0,0,31.9,0.471,29,tested_negative +3,111,90,12,78,28.4,0.495,29,tested_negative +6,102,82,0,0,30.8,0.18,36,tested_positive +6,134,70,23,130,35.4,0.542,29,tested_positive +2,87,0,23,0,28.9,0.773,25,tested_negative +1,79,60,42,48,43.5,0.678,23,tested_negative +2,75,64,24,55,29.7,0.37,33,tested_negative +8,179,72,42,130,32.7,0.719,36,tested_positive +6,85,78,0,0,31.2,0.382,42,tested_negative +0,129,110,46,130,67.1,0.319,26,tested_positive +5,143,78,0,0,45,0.19,47,tested_negative +5,130,82,0,0,39.1,0.956,37,tested_positive +6,87,80,0,0,23.2,0.084,32,tested_negative +0,119,64,18,92,34.9,0.725,23,tested_negative +1,0,74,20,23,27.7,0.299,21,tested_negative +5,73,60,0,0,26.8,0.268,27,tested_negative +4,141,74,0,0,27.6,0.244,40,tested_negative +7,194,68,28,0,35.9,0.745,41,tested_positive +8,181,68,36,495,30.1,0.615,60,tested_positive +1,128,98,41,58,32,1.321,33,tested_positive +8,109,76,39,114,27.9,0.64,31,tested_positive +5,139,80,35,160,31.6,0.361,25,tested_positive +3,111,62,0,0,22.6,0.142,21,tested_negative +9,123,70,44,94,33.1,0.374,40,tested_negative +7,159,66,0,0,30.4,0.383,36,tested_positive +11,135,0,0,0,52.3,0.578,40,tested_positive +8,85,55,20,0,24.4,0.136,42,tested_negative +5,158,84,41,210,39.4,0.395,29,tested_positive +1,105,58,0,0,24.3,0.187,21,tested_negative +3,107,62,13,48,22.9,0.678,23,tested_positive +4,109,64,44,99,34.8,0.905,26,tested_positive +4,148,60,27,318,30.9,0.15,29,tested_positive +0,113,80,16,0,31,0.874,21,tested_negative +1,138,82,0,0,40.1,0.236,28,tested_negative +0,108,68,20,0,27.3,0.787,32,tested_negative +2,99,70,16,44,20.4,0.235,27,tested_negative +6,103,72,32,190,37.7,0.324,55,tested_negative +5,111,72,28,0,23.9,0.407,27,tested_negative +8,196,76,29,280,37.5,0.605,57,tested_positive +5,162,104,0,0,37.7,0.151,52,tested_positive +1,96,64,27,87,33.2,0.289,21,tested_negative +7,184,84,33,0,35.5,0.355,41,tested_positive +2,81,60,22,0,27.7,0.29,25,tested_negative +0,147,85,54,0,42.8,0.375,24,tested_negative +7,179,95,31,0,34.2,0.164,60,tested_negative +0,140,65,26,130,42.6,0.431,24,tested_positive +9,112,82,32,175,34.2,0.26,36,tested_positive +12,151,70,40,271,41.8,0.742,38,tested_positive +5,109,62,41,129,35.8,0.514,25,tested_positive +6,125,68,30,120,30,0.464,32,tested_negative +5,85,74,22,0,29,1.224,32,tested_positive +5,112,66,0,0,37.8,0.261,41,tested_positive +0,177,60,29,478,34.6,1.072,21,tested_positive +2,158,90,0,0,31.6,0.805,66,tested_positive +7,119,0,0,0,25.2,0.209,37,tested_negative +7,142,60,33,190,28.8,0.687,61,tested_negative +1,100,66,15,56,23.6,0.666,26,tested_negative +1,87,78,27,32,34.6,0.101,22,tested_negative +0,101,76,0,0,35.7,0.198,26,tested_negative +3,162,52,38,0,37.2,0.652,24,tested_positive +4,197,70,39,744,36.7,2.329,31,tested_negative +0,117,80,31,53,45.2,0.089,24,tested_negative +4,142,86,0,0,44,0.645,22,tested_positive +6,134,80,37,370,46.2,0.238,46,tested_positive +1,79,80,25,37,25.4,0.583,22,tested_negative +4,122,68,0,0,35,0.394,29,tested_negative +3,74,68,28,45,29.7,0.293,23,tested_negative +4,171,72,0,0,43.6,0.479,26,tested_positive +7,181,84,21,192,35.9,0.586,51,tested_positive +0,179,90,27,0,44.1,0.686,23,tested_positive +9,164,84,21,0,30.8,0.831,32,tested_positive +0,104,76,0,0,18.4,0.582,27,tested_negative +1,91,64,24,0,29.2,0.192,21,tested_negative +4,91,70,32,88,33.1,0.446,22,tested_negative +3,139,54,0,0,25.6,0.402,22,tested_positive +6,119,50,22,176,27.1,1.318,33,tested_positive +2,146,76,35,194,38.2,0.329,29,tested_negative +9,184,85,15,0,30,1.213,49,tested_positive +10,122,68,0,0,31.2,0.258,41,tested_negative +0,165,90,33,680,52.3,0.427,23,tested_negative +9,124,70,33,402,35.4,0.282,34,tested_negative +1,111,86,19,0,30.1,0.143,23,tested_negative +9,106,52,0,0,31.2,0.38,42,tested_negative +2,129,84,0,0,28,0.284,27,tested_negative +2,90,80,14,55,24.4,0.249,24,tested_negative +0,86,68,32,0,35.8,0.238,25,tested_negative +12,92,62,7,258,27.6,0.926,44,tested_positive +1,113,64,35,0,33.6,0.543,21,tested_positive +3,111,56,39,0,30.1,0.557,30,tested_negative +2,114,68,22,0,28.7,0.092,25,tested_negative +1,193,50,16,375,25.9,0.655,24,tested_negative +11,155,76,28,150,33.3,1.353,51,tested_positive +3,191,68,15,130,30.9,0.299,34,tested_negative +3,141,0,0,0,30,0.761,27,tested_positive +4,95,70,32,0,32.1,0.612,24,tested_negative +3,142,80,15,0,32.4,0.2,63,tested_negative +4,123,62,0,0,32,0.226,35,tested_positive +5,96,74,18,67,33.6,0.997,43,tested_negative +0,138,0,0,0,36.3,0.933,25,tested_positive +2,128,64,42,0,40,1.101,24,tested_negative +0,102,52,0,0,25.1,0.078,21,tested_negative +2,146,0,0,0,27.5,0.24,28,tested_positive +10,101,86,37,0,45.6,1.136,38,tested_positive +2,108,62,32,56,25.2,0.128,21,tested_negative +3,122,78,0,0,23,0.254,40,tested_negative +1,71,78,50,45,33.2,0.422,21,tested_negative +13,106,70,0,0,34.2,0.251,52,tested_negative +2,100,70,52,57,40.5,0.677,25,tested_negative +7,106,60,24,0,26.5,0.296,29,tested_positive +0,104,64,23,116,27.8,0.454,23,tested_negative +5,114,74,0,0,24.9,0.744,57,tested_negative +2,108,62,10,278,25.3,0.881,22,tested_negative +0,146,70,0,0,37.9,0.334,28,tested_positive +10,129,76,28,122,35.9,0.28,39,tested_negative +7,133,88,15,155,32.4,0.262,37,tested_negative +7,161,86,0,0,30.4,0.165,47,tested_positive +2,108,80,0,0,27,0.259,52,tested_positive +7,136,74,26,135,26,0.647,51,tested_negative +5,155,84,44,545,38.7,0.619,34,tested_negative +1,119,86,39,220,45.6,0.808,29,tested_positive +4,96,56,17,49,20.8,0.34,26,tested_negative +5,108,72,43,75,36.1,0.263,33,tested_negative +0,78,88,29,40,36.9,0.434,21,tested_negative +0,107,62,30,74,36.6,0.757,25,tested_positive +2,128,78,37,182,43.3,1.224,31,tested_positive +1,128,48,45,194,40.5,0.613,24,tested_positive +0,161,50,0,0,21.9,0.254,65,tested_negative +6,151,62,31,120,35.5,0.692,28,tested_negative +2,146,70,38,360,28,0.337,29,tested_positive +0,126,84,29,215,30.7,0.52,24,tested_negative +14,100,78,25,184,36.6,0.412,46,tested_positive +8,112,72,0,0,23.6,0.84,58,tested_negative +0,167,0,0,0,32.3,0.839,30,tested_positive +2,144,58,33,135,31.6,0.422,25,tested_positive +5,77,82,41,42,35.8,0.156,35,tested_negative +5,115,98,0,0,52.9,0.209,28,tested_positive +3,150,76,0,0,21,0.207,37,tested_negative +2,120,76,37,105,39.7,0.215,29,tested_negative +10,161,68,23,132,25.5,0.326,47,tested_positive +0,137,68,14,148,24.8,0.143,21,tested_negative +0,128,68,19,180,30.5,1.391,25,tested_positive +2,124,68,28,205,32.9,0.875,30,tested_positive +6,80,66,30,0,26.2,0.313,41,tested_negative +0,106,70,37,148,39.4,0.605,22,tested_negative +2,155,74,17,96,26.6,0.433,27,tested_positive +3,113,50,10,85,29.5,0.626,25,tested_negative +7,109,80,31,0,35.9,1.127,43,tested_positive +2,112,68,22,94,34.1,0.315,26,tested_negative +3,99,80,11,64,19.3,0.284,30,tested_negative +3,182,74,0,0,30.5,0.345,29,tested_positive +3,115,66,39,140,38.1,0.15,28,tested_negative +6,194,78,0,0,23.5,0.129,59,tested_positive +4,129,60,12,231,27.5,0.527,31,tested_negative +3,112,74,30,0,31.6,0.197,25,tested_positive +0,124,70,20,0,27.4,0.254,36,tested_positive +13,152,90,33,29,26.8,0.731,43,tested_positive +2,112,75,32,0,35.7,0.148,21,tested_negative +1,157,72,21,168,25.6,0.123,24,tested_negative +1,122,64,32,156,35.1,0.692,30,tested_positive +10,179,70,0,0,35.1,0.2,37,tested_negative +2,102,86,36,120,45.5,0.127,23,tested_positive +6,105,70,32,68,30.8,0.122,37,tested_negative +8,118,72,19,0,23.1,1.476,46,tested_negative +2,87,58,16,52,32.7,0.166,25,tested_negative +1,180,0,0,0,43.3,0.282,41,tested_positive +12,106,80,0,0,23.6,0.137,44,tested_negative +1,95,60,18,58,23.9,0.26,22,tested_negative +0,165,76,43,255,47.9,0.259,26,tested_negative +0,117,0,0,0,33.8,0.932,44,tested_negative +5,115,76,0,0,31.2,0.343,44,tested_positive +9,152,78,34,171,34.2,0.893,33,tested_positive +7,178,84,0,0,39.9,0.331,41,tested_positive +1,130,70,13,105,25.9,0.472,22,tested_negative +1,95,74,21,73,25.9,0.673,36,tested_negative +1,0,68,35,0,32,0.389,22,tested_negative +5,122,86,0,0,34.7,0.29,33,tested_negative +8,95,72,0,0,36.8,0.485,57,tested_negative +8,126,88,36,108,38.5,0.349,49,tested_negative +1,139,46,19,83,28.7,0.654,22,tested_negative +3,116,0,0,0,23.5,0.187,23,tested_negative +3,99,62,19,74,21.8,0.279,26,tested_negative +5,0,80,32,0,41,0.346,37,tested_positive +4,92,80,0,0,42.2,0.237,29,tested_negative +4,137,84,0,0,31.2,0.252,30,tested_negative +3,61,82,28,0,34.4,0.243,46,tested_negative +1,90,62,12,43,27.2,0.58,24,tested_negative +3,90,78,0,0,42.7,0.559,21,tested_negative +9,165,88,0,0,30.4,0.302,49,tested_positive +1,125,50,40,167,33.3,0.962,28,tested_positive +13,129,0,30,0,39.9,0.569,44,tested_positive +12,88,74,40,54,35.3,0.378,48,tested_negative +1,196,76,36,249,36.5,0.875,29,tested_positive +5,189,64,33,325,31.2,0.583,29,tested_positive +5,158,70,0,0,29.8,0.207,63,tested_negative +5,103,108,37,0,39.2,0.305,65,tested_negative +4,146,78,0,0,38.5,0.52,67,tested_positive +4,147,74,25,293,34.9,0.385,30,tested_negative +5,99,54,28,83,34,0.499,30,tested_negative +6,124,72,0,0,27.6,0.368,29,tested_positive +0,101,64,17,0,21,0.252,21,tested_negative +3,81,86,16,66,27.5,0.306,22,tested_negative +1,133,102,28,140,32.8,0.234,45,tested_positive +3,173,82,48,465,38.4,2.137,25,tested_positive +0,118,64,23,89,0,1.731,21,tested_negative +0,84,64,22,66,35.8,0.545,21,tested_negative +2,105,58,40,94,34.9,0.225,25,tested_negative +2,122,52,43,158,36.2,0.816,28,tested_negative +12,140,82,43,325,39.2,0.528,58,tested_positive +0,98,82,15,84,25.2,0.299,22,tested_negative +1,87,60,37,75,37.2,0.509,22,tested_negative +4,156,75,0,0,48.3,0.238,32,tested_positive +0,93,100,39,72,43.4,1.021,35,tested_negative +1,107,72,30,82,30.8,0.821,24,tested_negative +0,105,68,22,0,20,0.236,22,tested_negative +1,109,60,8,182,25.4,0.947,21,tested_negative +1,90,62,18,59,25.1,1.268,25,tested_negative +1,125,70,24,110,24.3,0.221,25,tested_negative +1,119,54,13,50,22.3,0.205,24,tested_negative +5,116,74,29,0,32.3,0.66,35,tested_positive +8,105,100,36,0,43.3,0.239,45,tested_positive +5,144,82,26,285,32,0.452,58,tested_positive +3,100,68,23,81,31.6,0.949,28,tested_negative +1,100,66,29,196,32,0.444,42,tested_negative +5,166,76,0,0,45.7,0.34,27,tested_positive +1,131,64,14,415,23.7,0.389,21,tested_negative +4,116,72,12,87,22.1,0.463,37,tested_negative +4,158,78,0,0,32.9,0.803,31,tested_positive +2,127,58,24,275,27.7,1.6,25,tested_negative +3,96,56,34,115,24.7,0.944,39,tested_negative +0,131,66,40,0,34.3,0.196,22,tested_positive +3,82,70,0,0,21.1,0.389,25,tested_negative +3,193,70,31,0,34.9,0.241,25,tested_positive +4,95,64,0,0,32,0.161,31,tested_positive +6,137,61,0,0,24.2,0.151,55,tested_negative +5,136,84,41,88,35,0.286,35,tested_positive +9,72,78,25,0,31.6,0.28,38,tested_negative +5,168,64,0,0,32.9,0.135,41,tested_positive +2,123,48,32,165,42.1,0.52,26,tested_negative +4,115,72,0,0,28.9,0.376,46,tested_positive +0,101,62,0,0,21.9,0.336,25,tested_negative +8,197,74,0,0,25.9,1.191,39,tested_positive +1,172,68,49,579,42.4,0.702,28,tested_positive +6,102,90,39,0,35.7,0.674,28,tested_negative +1,112,72,30,176,34.4,0.528,25,tested_negative +1,143,84,23,310,42.4,1.076,22,tested_negative +1,143,74,22,61,26.2,0.256,21,tested_negative +0,138,60,35,167,34.6,0.534,21,tested_positive +3,173,84,33,474,35.7,0.258,22,tested_positive +1,97,68,21,0,27.2,1.095,22,tested_negative +4,144,82,32,0,38.5,0.554,37,tested_positive +1,83,68,0,0,18.2,0.624,27,tested_negative +3,129,64,29,115,26.4,0.219,28,tested_positive +1,119,88,41,170,45.3,0.507,26,tested_negative +2,94,68,18,76,26,0.561,21,tested_negative +0,102,64,46,78,40.6,0.496,21,tested_negative +2,115,64,22,0,30.8,0.421,21,tested_negative +8,151,78,32,210,42.9,0.516,36,tested_positive +4,184,78,39,277,37,0.264,31,tested_positive +0,94,0,0,0,0,0.256,25,tested_negative +1,181,64,30,180,34.1,0.328,38,tested_positive +0,135,94,46,145,40.6,0.284,26,tested_negative +1,95,82,25,180,35,0.233,43,tested_positive +2,99,0,0,0,22.2,0.108,23,tested_negative +3,89,74,16,85,30.4,0.551,38,tested_negative +1,80,74,11,60,30,0.527,22,tested_negative +2,139,75,0,0,25.6,0.167,29,tested_negative +1,90,68,8,0,24.5,1.138,36,tested_negative +0,141,0,0,0,42.4,0.205,29,tested_positive +12,140,85,33,0,37.4,0.244,41,tested_negative +5,147,75,0,0,29.9,0.434,28,tested_negative +1,97,70,15,0,18.2,0.147,21,tested_negative +6,107,88,0,0,36.8,0.727,31,tested_negative +0,189,104,25,0,34.3,0.435,41,tested_positive +2,83,66,23,50,32.2,0.497,22,tested_negative +4,117,64,27,120,33.2,0.23,24,tested_negative +8,108,70,0,0,30.5,0.955,33,tested_positive +4,117,62,12,0,29.7,0.38,30,tested_positive +0,180,78,63,14,59.4,2.42,25,tested_positive +1,100,72,12,70,25.3,0.658,28,tested_negative +0,95,80,45,92,36.5,0.33,26,tested_negative +0,104,64,37,64,33.6,0.51,22,tested_positive +0,120,74,18,63,30.5,0.285,26,tested_negative +1,82,64,13,95,21.2,0.415,23,tested_negative +2,134,70,0,0,28.9,0.542,23,tested_positive +0,91,68,32,210,39.9,0.381,25,tested_negative +2,119,0,0,0,19.6,0.832,72,tested_negative +2,100,54,28,105,37.8,0.498,24,tested_negative +14,175,62,30,0,33.6,0.212,38,tested_positive +1,135,54,0,0,26.7,0.687,62,tested_negative +5,86,68,28,71,30.2,0.364,24,tested_negative +10,148,84,48,237,37.6,1.001,51,tested_positive +9,134,74,33,60,25.9,0.46,81,tested_negative +9,120,72,22,56,20.8,0.733,48,tested_negative +1,71,62,0,0,21.8,0.416,26,tested_negative +8,74,70,40,49,35.3,0.705,39,tested_negative +5,88,78,30,0,27.6,0.258,37,tested_negative +10,115,98,0,0,24,1.022,34,tested_negative +0,124,56,13,105,21.8,0.452,21,tested_negative +0,74,52,10,36,27.8,0.269,22,tested_negative +0,97,64,36,100,36.8,0.6,25,tested_negative +8,120,0,0,0,30,0.183,38,tested_positive +6,154,78,41,140,46.1,0.571,27,tested_negative +1,144,82,40,0,41.3,0.607,28,tested_negative +0,137,70,38,0,33.2,0.17,22,tested_negative +0,119,66,27,0,38.8,0.259,22,tested_negative +7,136,90,0,0,29.9,0.21,50,tested_negative +4,114,64,0,0,28.9,0.126,24,tested_negative +0,137,84,27,0,27.3,0.231,59,tested_negative +2,105,80,45,191,33.7,0.711,29,tested_positive +7,114,76,17,110,23.8,0.466,31,tested_negative +8,126,74,38,75,25.9,0.162,39,tested_negative +4,132,86,31,0,28,0.419,63,tested_negative +3,158,70,30,328,35.5,0.344,35,tested_positive +0,123,88,37,0,35.2,0.197,29,tested_negative +4,85,58,22,49,27.8,0.306,28,tested_negative +0,84,82,31,125,38.2,0.233,23,tested_negative +0,145,0,0,0,44.2,0.63,31,tested_positive +0,135,68,42,250,42.3,0.365,24,tested_positive +1,139,62,41,480,40.7,0.536,21,tested_negative +0,173,78,32,265,46.5,1.159,58,tested_negative +4,99,72,17,0,25.6,0.294,28,tested_negative +8,194,80,0,0,26.1,0.551,67,tested_negative +2,83,65,28,66,36.8,0.629,24,tested_negative +2,89,90,30,0,33.5,0.292,42,tested_negative +4,99,68,38,0,32.8,0.145,33,tested_negative +4,125,70,18,122,28.9,1.144,45,tested_positive +3,80,0,0,0,0,0.174,22,tested_negative +6,166,74,0,0,26.6,0.304,66,tested_negative +5,110,68,0,0,26,0.292,30,tested_negative +2,81,72,15,76,30.1,0.547,25,tested_negative +7,195,70,33,145,25.1,0.163,55,tested_positive +6,154,74,32,193,29.3,0.839,39,tested_negative +2,117,90,19,71,25.2,0.313,21,tested_negative +3,84,72,32,0,37.2,0.267,28,tested_negative +6,0,68,41,0,39,0.727,41,tested_positive +7,94,64,25,79,33.3,0.738,41,tested_negative +3,96,78,39,0,37.3,0.238,40,tested_negative +10,75,82,0,0,33.3,0.263,38,tested_negative +0,180,90,26,90,36.5,0.314,35,tested_positive +1,130,60,23,170,28.6,0.692,21,tested_negative +2,84,50,23,76,30.4,0.968,21,tested_negative +8,120,78,0,0,25,0.409,64,tested_negative +12,84,72,31,0,29.7,0.297,46,tested_positive +0,139,62,17,210,22.1,0.207,21,tested_negative +9,91,68,0,0,24.2,0.2,58,tested_negative +2,91,62,0,0,27.3,0.525,22,tested_negative +3,99,54,19,86,25.6,0.154,24,tested_negative +3,163,70,18,105,31.6,0.268,28,tested_positive +9,145,88,34,165,30.3,0.771,53,tested_positive +7,125,86,0,0,37.6,0.304,51,tested_negative +13,76,60,0,0,32.8,0.18,41,tested_negative +6,129,90,7,326,19.6,0.582,60,tested_negative +2,68,70,32,66,25,0.187,25,tested_negative +3,124,80,33,130,33.2,0.305,26,tested_negative +6,114,0,0,0,0,0.189,26,tested_negative +9,130,70,0,0,34.2,0.652,45,tested_positive +3,125,58,0,0,31.6,0.151,24,tested_negative +3,87,60,18,0,21.8,0.444,21,tested_negative +1,97,64,19,82,18.2,0.299,21,tested_negative +3,116,74,15,105,26.3,0.107,24,tested_negative +0,117,66,31,188,30.8,0.493,22,tested_negative +0,111,65,0,0,24.6,0.66,31,tested_negative +2,122,60,18,106,29.8,0.717,22,tested_negative +0,107,76,0,0,45.3,0.686,24,tested_negative +1,86,66,52,65,41.3,0.917,29,tested_negative +6,91,0,0,0,29.8,0.501,31,tested_negative +1,77,56,30,56,33.3,1.251,24,tested_negative +4,132,0,0,0,32.9,0.302,23,tested_positive +0,105,90,0,0,29.6,0.197,46,tested_negative +0,57,60,0,0,21.7,0.735,67,tested_negative +0,127,80,37,210,36.3,0.804,23,tested_negative +3,129,92,49,155,36.4,0.968,32,tested_positive +8,100,74,40,215,39.4,0.661,43,tested_positive +3,128,72,25,190,32.4,0.549,27,tested_positive +10,90,85,32,0,34.9,0.825,56,tested_positive +4,84,90,23,56,39.5,0.159,25,tested_negative +1,88,78,29,76,32,0.365,29,tested_negative +8,186,90,35,225,34.5,0.423,37,tested_positive +5,187,76,27,207,43.6,1.034,53,tested_positive +4,131,68,21,166,33.1,0.16,28,tested_negative +1,164,82,43,67,32.8,0.341,50,tested_negative +4,189,110,31,0,28.5,0.68,37,tested_negative +1,116,70,28,0,27.4,0.204,21,tested_negative +3,84,68,30,106,31.9,0.591,25,tested_negative +6,114,88,0,0,27.8,0.247,66,tested_negative +1,88,62,24,44,29.9,0.422,23,tested_negative +1,84,64,23,115,36.9,0.471,28,tested_negative +7,124,70,33,215,25.5,0.161,37,tested_negative +1,97,70,40,0,38.1,0.218,30,tested_negative +8,110,76,0,0,27.8,0.237,58,tested_negative +11,103,68,40,0,46.2,0.126,42,tested_negative +11,85,74,0,0,30.1,0.3,35,tested_negative +6,125,76,0,0,33.8,0.121,54,tested_positive +0,198,66,32,274,41.3,0.502,28,tested_positive +1,87,68,34,77,37.6,0.401,24,tested_negative +6,99,60,19,54,26.9,0.497,32,tested_negative +0,91,80,0,0,32.4,0.601,27,tested_negative +2,95,54,14,88,26.1,0.748,22,tested_negative +1,99,72,30,18,38.6,0.412,21,tested_negative +6,92,62,32,126,32,0.085,46,tested_negative +4,154,72,29,126,31.3,0.338,37,tested_negative +0,121,66,30,165,34.3,0.203,33,tested_positive +3,78,70,0,0,32.5,0.27,39,tested_negative +2,130,96,0,0,22.6,0.268,21,tested_negative +3,111,58,31,44,29.5,0.43,22,tested_negative +2,98,60,17,120,34.7,0.198,22,tested_negative +1,143,86,30,330,30.1,0.892,23,tested_negative +1,119,44,47,63,35.5,0.28,25,tested_negative +6,108,44,20,130,24,0.813,35,tested_negative +2,118,80,0,0,42.9,0.693,21,tested_positive +10,133,68,0,0,27,0.245,36,tested_negative +2,197,70,99,0,34.7,0.575,62,tested_positive +0,151,90,46,0,42.1,0.371,21,tested_positive +6,109,60,27,0,25,0.206,27,tested_negative +12,121,78,17,0,26.5,0.259,62,tested_negative +8,100,76,0,0,38.7,0.19,42,tested_negative +8,124,76,24,600,28.7,0.687,52,tested_positive +1,93,56,11,0,22.5,0.417,22,tested_negative +8,143,66,0,0,34.9,0.129,41,tested_positive +6,103,66,0,0,24.3,0.249,29,tested_negative +3,176,86,27,156,33.3,1.154,52,tested_positive +0,73,0,0,0,21.1,0.342,25,tested_negative +11,111,84,40,0,46.8,0.925,45,tested_positive +2,112,78,50,140,39.4,0.175,24,tested_negative +3,132,80,0,0,34.4,0.402,44,tested_positive +2,82,52,22,115,28.5,1.699,25,tested_negative +6,123,72,45,230,33.6,0.733,34,tested_negative +0,188,82,14,185,32,0.682,22,tested_positive +0,67,76,0,0,45.3,0.194,46,tested_negative +1,89,24,19,25,27.8,0.559,21,tested_negative +1,173,74,0,0,36.8,0.088,38,tested_positive +1,109,38,18,120,23.1,0.407,26,tested_negative +1,108,88,19,0,27.1,0.4,24,tested_negative +6,96,0,0,0,23.7,0.19,28,tested_negative +1,124,74,36,0,27.8,0.1,30,tested_negative +7,150,78,29,126,35.2,0.692,54,tested_positive +4,183,0,0,0,28.4,0.212,36,tested_positive +1,124,60,32,0,35.8,0.514,21,tested_negative +1,181,78,42,293,40,1.258,22,tested_positive +1,92,62,25,41,19.5,0.482,25,tested_negative +0,152,82,39,272,41.5,0.27,27,tested_negative +1,111,62,13,182,24,0.138,23,tested_negative +3,106,54,21,158,30.9,0.292,24,tested_negative +3,174,58,22,194,32.9,0.593,36,tested_positive +7,168,88,42,321,38.2,0.787,40,tested_positive +6,105,80,28,0,32.5,0.878,26,tested_negative +11,138,74,26,144,36.1,0.557,50,tested_positive +3,106,72,0,0,25.8,0.207,27,tested_negative +6,117,96,0,0,28.7,0.157,30,tested_negative +2,68,62,13,15,20.1,0.257,23,tested_negative +9,112,82,24,0,28.2,1.282,50,tested_positive +0,119,0,0,0,32.4,0.141,24,tested_positive +2,112,86,42,160,38.4,0.246,28,tested_negative +2,92,76,20,0,24.2,1.698,28,tested_negative +6,183,94,0,0,40.8,1.461,45,tested_negative +0,94,70,27,115,43.5,0.347,21,tested_negative +2,108,64,0,0,30.8,0.158,21,tested_negative +4,90,88,47,54,37.7,0.362,29,tested_negative +0,125,68,0,0,24.7,0.206,21,tested_negative +0,132,78,0,0,32.4,0.393,21,tested_negative +5,128,80,0,0,34.6,0.144,45,tested_negative +4,94,65,22,0,24.7,0.148,21,tested_negative +7,114,64,0,0,27.4,0.732,34,tested_positive +0,102,78,40,90,34.5,0.238,24,tested_negative +2,111,60,0,0,26.2,0.343,23,tested_negative +1,128,82,17,183,27.5,0.115,22,tested_negative +10,92,62,0,0,25.9,0.167,31,tested_negative +13,104,72,0,0,31.2,0.465,38,tested_positive +5,104,74,0,0,28.8,0.153,48,tested_negative +2,94,76,18,66,31.6,0.649,23,tested_negative +7,97,76,32,91,40.9,0.871,32,tested_positive +1,100,74,12,46,19.5,0.149,28,tested_negative +0,102,86,17,105,29.3,0.695,27,tested_negative +4,128,70,0,0,34.3,0.303,24,tested_negative +6,147,80,0,0,29.5,0.178,50,tested_positive +4,90,0,0,0,28,0.61,31,tested_negative +3,103,72,30,152,27.6,0.73,27,tested_negative +2,157,74,35,440,39.4,0.134,30,tested_negative +1,167,74,17,144,23.4,0.447,33,tested_positive +0,179,50,36,159,37.8,0.455,22,tested_positive +11,136,84,35,130,28.3,0.26,42,tested_positive +0,107,60,25,0,26.4,0.133,23,tested_negative +1,91,54,25,100,25.2,0.234,23,tested_negative +1,117,60,23,106,33.8,0.466,27,tested_negative +5,123,74,40,77,34.1,0.269,28,tested_negative +2,120,54,0,0,26.8,0.455,27,tested_negative +1,106,70,28,135,34.2,0.142,22,tested_negative +2,155,52,27,540,38.7,0.24,25,tested_positive +2,101,58,35,90,21.8,0.155,22,tested_negative +1,120,80,48,200,38.9,1.162,41,tested_negative +11,127,106,0,0,39,0.19,51,tested_negative +3,80,82,31,70,34.2,1.292,27,tested_positive +10,162,84,0,0,27.7,0.182,54,tested_negative +1,199,76,43,0,42.9,1.394,22,tested_positive +8,167,106,46,231,37.6,0.165,43,tested_positive +9,145,80,46,130,37.9,0.637,40,tested_positive +6,115,60,39,0,33.7,0.245,40,tested_positive +1,112,80,45,132,34.8,0.217,24,tested_negative +4,145,82,18,0,32.5,0.235,70,tested_positive +10,111,70,27,0,27.5,0.141,40,tested_positive +6,98,58,33,190,34,0.43,43,tested_negative +9,154,78,30,100,30.9,0.164,45,tested_negative +6,165,68,26,168,33.6,0.631,49,tested_negative +1,99,58,10,0,25.4,0.551,21,tested_negative +10,68,106,23,49,35.5,0.285,47,tested_negative +3,123,100,35,240,57.3,0.88,22,tested_negative +8,91,82,0,0,35.6,0.587,68,tested_negative +6,195,70,0,0,30.9,0.328,31,tested_positive +9,156,86,0,0,24.8,0.23,53,tested_positive +0,93,60,0,0,35.3,0.263,25,tested_negative +3,121,52,0,0,36,0.127,25,tested_positive +2,101,58,17,265,24.2,0.614,23,tested_negative +2,56,56,28,45,24.2,0.332,22,tested_negative +0,162,76,36,0,49.6,0.364,26,tested_positive +0,95,64,39,105,44.6,0.366,22,tested_negative +4,125,80,0,0,32.3,0.536,27,tested_positive +5,136,82,0,0,0,0.64,69,tested_negative +2,129,74,26,205,33.2,0.591,25,tested_negative +3,130,64,0,0,23.1,0.314,22,tested_negative +1,107,50,19,0,28.3,0.181,29,tested_negative +1,140,74,26,180,24.1,0.828,23,tested_negative +1,144,82,46,180,46.1,0.335,46,tested_positive +8,107,80,0,0,24.6,0.856,34,tested_negative +13,158,114,0,0,42.3,0.257,44,tested_positive +2,121,70,32,95,39.1,0.886,23,tested_negative +7,129,68,49,125,38.5,0.439,43,tested_positive +2,90,60,0,0,23.5,0.191,25,tested_negative +7,142,90,24,480,30.4,0.128,43,tested_positive +3,169,74,19,125,29.9,0.268,31,tested_positive +0,99,0,0,0,25,0.253,22,tested_negative +4,127,88,11,155,34.5,0.598,28,tested_negative +4,118,70,0,0,44.5,0.904,26,tested_negative +2,122,76,27,200,35.9,0.483,26,tested_negative +6,125,78,31,0,27.6,0.565,49,tested_positive +1,168,88,29,0,35,0.905,52,tested_positive +2,129,0,0,0,38.5,0.304,41,tested_negative +4,110,76,20,100,28.4,0.118,27,tested_negative +6,80,80,36,0,39.8,0.177,28,tested_negative +10,115,0,0,0,0,0.261,30,tested_positive +2,127,46,21,335,34.4,0.176,22,tested_negative +9,164,78,0,0,32.8,0.148,45,tested_positive +2,93,64,32,160,38,0.674,23,tested_positive +3,158,64,13,387,31.2,0.295,24,tested_negative +5,126,78,27,22,29.6,0.439,40,tested_negative +10,129,62,36,0,41.2,0.441,38,tested_positive +0,134,58,20,291,26.4,0.352,21,tested_negative +3,102,74,0,0,29.5,0.121,32,tested_negative +7,187,50,33,392,33.9,0.826,34,tested_positive +3,173,78,39,185,33.8,0.97,31,tested_positive +10,94,72,18,0,23.1,0.595,56,tested_negative +1,108,60,46,178,35.5,0.415,24,tested_negative +5,97,76,27,0,35.6,0.378,52,tested_positive +4,83,86,19,0,29.3,0.317,34,tested_negative +1,114,66,36,200,38.1,0.289,21,tested_negative +1,149,68,29,127,29.3,0.349,42,tested_positive +5,117,86,30,105,39.1,0.251,42,tested_negative +1,111,94,0,0,32.8,0.265,45,tested_negative +4,112,78,40,0,39.4,0.236,38,tested_negative +1,116,78,29,180,36.1,0.496,25,tested_negative +0,141,84,26,0,32.4,0.433,22,tested_negative +2,175,88,0,0,22.9,0.326,22,tested_negative +2,92,52,0,0,30.1,0.141,22,tested_negative +3,130,78,23,79,28.4,0.323,34,tested_positive +8,120,86,0,0,28.4,0.259,22,tested_positive +2,174,88,37,120,44.5,0.646,24,tested_positive +2,106,56,27,165,29,0.426,22,tested_negative +2,105,75,0,0,23.3,0.56,53,tested_negative +4,95,60,32,0,35.4,0.284,28,tested_negative +0,126,86,27,120,27.4,0.515,21,tested_negative +8,65,72,23,0,32,0.6,42,tested_negative +2,99,60,17,160,36.6,0.453,21,tested_negative +1,102,74,0,0,39.5,0.293,42,tested_positive +11,120,80,37,150,42.3,0.785,48,tested_positive +3,102,44,20,94,30.8,0.4,26,tested_negative +1,109,58,18,116,28.5,0.219,22,tested_negative +9,140,94,0,0,32.7,0.734,45,tested_positive +13,153,88,37,140,40.6,1.174,39,tested_negative +12,100,84,33,105,30,0.488,46,tested_negative +1,147,94,41,0,49.3,0.358,27,tested_positive +1,81,74,41,57,46.3,1.096,32,tested_negative +3,187,70,22,200,36.4,0.408,36,tested_positive +6,162,62,0,0,24.3,0.178,50,tested_positive +4,136,70,0,0,31.2,1.182,22,tested_positive +1,121,78,39,74,39,0.261,28,tested_negative +3,108,62,24,0,26,0.223,25,tested_negative +0,181,88,44,510,43.3,0.222,26,tested_positive +8,154,78,32,0,32.4,0.443,45,tested_positive +1,128,88,39,110,36.5,1.057,37,tested_positive +7,137,90,41,0,32,0.391,39,tested_negative +0,123,72,0,0,36.3,0.258,52,tested_positive +1,106,76,0,0,37.5,0.197,26,tested_negative +6,190,92,0,0,35.5,0.278,66,tested_positive +2,88,58,26,16,28.4,0.766,22,tested_negative +9,170,74,31,0,44,0.403,43,tested_positive +9,89,62,0,0,22.5,0.142,33,tested_negative +10,101,76,48,180,32.9,0.171,63,tested_negative +2,122,70,27,0,36.8,0.34,27,tested_negative +5,121,72,23,112,26.2,0.245,30,tested_negative +1,126,60,0,0,30.1,0.349,47,tested_positive +1,93,70,31,0,30.4,0.315,23,tested_negative diff --git a/openml/tests.test_runs.test_run.TestRun.test_offline_and_online_run_identical/org/openml/test/datasets/20/dataset.pkl.py3 b/openml/tests.test_runs.test_run.TestRun.test_offline_and_online_run_identical/org/openml/test/datasets/20/dataset.pkl.py3 new file mode 100644 index 0000000000000000000000000000000000000000..e22d32d24c87fa18ffab79c4999d9ff724edb36f GIT binary patch literal 24359 zcmbV!34ByVws&=Rc7m+EcRC%i2NEC&0b-MTY1+2!v~3eZ3=s)gNgyOKi|p8_C}uUOjA+vB{Ryt%cjp`*2?r893uO>524hK|nOo8dB1mSZ;uIARJSzO zcIJsCy**>9yIb3v>z21PRM#qN6ygcPh-*4JYE}bJM|E}k>QzJJA@5ve##2+byrEuM zHcTqMDzC1lt6^zdM{`|GOK;DpdDr!}_6Cw;zKjYz(p%QsW4-=B^a6f3id*EBoO-skk4{GkLK3;hE>3%wx$zQnNZ!@u(J9#WegTK*?OYsSygI1C>m7M z+P$KEbzZebzRCqqgBe@o>;J%q5>EzWt)2E>1unG z(`1$EO7)w1o6>rs)iWqd^moka-Ljd_8hUi=dPAX5;D6w!{wbBZdTY1b0|p+`)zI11 zP!IAht?6pM4`ip2_O{Mub)*4kd!kwu9|?6otY|N`t)sr71B|e_yS8V-^~Zqc22ehz zzPhoaZAEQ&V`D=H$dmO0X5g-;WB5;Pbnt@#rnJz&gG$9ad8k z8B~}OGv!I`@trsgU!ks7ht)nOz&_tlEQC?`$0<~f$_nVKgPa@uq?0Ij5pYT%ht$_^JEw2bG!fsIuY{ zf~&G%h^a!Ok}31zNf}Z9qbao&qeMvp6BV%l{xC$d$|(Fqm#9^lm3`=+vZXo+q}R7% zrNTvJ#arcBC{67sU1Y1$seF(bELHyzXN8BtS@|C}${P3$@uYEeL}jh=P-s|hQ*MvG zdHPUrHccNMnhe72c4pYr+oPM;+Xdma9)i5KC$6@;86ct+fG4`MrMXT)rP8?4_)?t` z+JSjUw~)6Hv_I*W$Oqbyjt2gh zZQls`l&gpHCpzu9#kP$|?;pO7g?T@s@jG@W($V~K%{r#}c{THO!}~%%`8e+3?Evci ziw(RV!EuH^ZG6zUwvF5-^C7g0nAi4kq7UPV_NVxE)yiV2`k;wVmqt$!)TcNf$w7F5 z+`?TNzBnGaWB7RAy~F!R#`^C0_VEbD9nmd8y@yesG)^s@Q=B`%`9?H&Ay@J7LnFu& z(b$*xQyU@w!2wwtU!*t08|}QdPkcp7`b9htU^ z8OksG2ysWdPV{|zec#gId?FhC_AMAbFV<@wNIw)GUm)JNNY9JEozKAfZyy(O1#w>f zb~^bHJ|028Vfb^c#BmRAahOH$+|>WBJR;~cd6gl4$xXxg6TQ5NkGocX`#jM_H2KZ- z9XQ>N=jyBFd`a)bZ=|*ladV{k8^%fRIHA>BL^IDcc(6p{M-j9?;emF)0rZo&jj}ow zL3}4X>nr2q3~@bz{l1axfcr)6C-2;roj|=7k$@km7E>hF%jdf)C=-K%0gh36^N` z59viF`v^vw2dwi%{fN_KM-BB2-N*=b8PMP+!+3I`{3GQ#+92E^tB+c_Xg-4WA-jx4 zyppNTqItysKFW8LU(xQue~B^bOVpD%PW~LB{6O_F<#Ae%E#*TQ>(Yn@kG??s(c<_t zj8AP{u3>*;SBry4@q*S4nw6FZ$PI0uYwLA`jB2bPWLmd-)iZ!cBT0U;tAPfq_|sxdZY9H zvvmUD5%G^`@?`|;aFR#X8f4BhMd5O4al`{R18 zoXp496K>GHNdBFT3-LoHyK3q-M!1;I_le+rnA(x-L~=32g%`+f81MhA-9|b<-veBp zk>+ox7m!dJ&!jhcALP>b1)HteXC#~>{+jm%Bp>DD2-bOw@)Y7VxNEhFhuTffsLR2NW7xJT=mMz3O=9!M|L$My@Y-=iN-TP1Uf zB5aX<8rHekWf7#)#<4t-pQ4<77`G$oaU?y_zBlAW!o3mVkZ_UKGYwr|t*lOo`;_J$ zN;syKSKMDm(7*OxGH^fNN8JqmP`yI^5!-3skXJKFFd^%B2 z)_Htg51n%^?(fC@i?H=^zKz81796L0HR+em!$1ba31`C z>%EYVZ+CM({rJ8!LVjG#`9_LRK8%6Uq8y-KK9BKt4dZ~_ zhWbH!7ZC2uK|N5slE0C>KA{J$U-XYbO?+%aJq?ooU_9?9eUM(=c>baISNSd^J>dGi zc+Y@(LOoB92FE(dk8VagqrY!My<8(4B0NU@4kG@7pY!t|9`=y_5r;DZXb;rac8sqe z;bRfb)46CL#L+}A+TmuTD@6N|y=I~wP|pGn(B6GR=i~8+_+use4)xXfK`-BDkZ_0O zA-i}`9@Gn*pZncx)E~zAwwc4}`iUOpT!`&9AI2%>E94)~k_!99*I7afIJ!Q;afa|LM_M=}7 zQeK(O&wtH>E#c{qUvoWB{>6A%h`{pJK|X+698UT%GpWp$7gUo^`o65|)5d{EB^^$OQF>Py4}$_05|ou_=?M|woOwxT@&-&B4tQyqc&7{ojbIL-A* z=R$mfc<1Mshx6!4D-M^C94yx+;>Ybk{!V(LIs)+}5$ytXD8(Uf5eEv;&%j?fKWfR|biYCVf)4S4 z{HGuv^+fd(;XbX$JV$xH6Y(M9k@

UIq6Ju2;e_l85pr*#+Zf8{s6?D^xE~{>1ne z@{zqsuVg30Wx|c^xNiIHC=c!f{>%MVLtjAk9pc(G!Wp^;46WmKMm#E@`yI(kIEMHN zamew2>`SF5crZ(7zU^?D9oUW2qrVUy^^ttog5Q#VsPu%}jP5OjpA?s5@1gis*Ta2; z>yhFV^$j?s&VyY!f6D*lXBa2o4_sc1SGZ?#KczfC`ys9cHFj+zKf}BN_es7V?hit6 z{-jsJM~r*$U%nsZb@G4m1G;~p-of77el(8wBJQE&-*g`!T*emaSdIs@4)K`oBalzH z-pKxRpB=KFIv*i@QXN9)qCUz2^#i9zJ0?=SL4JjP19cb2FR~+@lj4Ws3iWLz{Gt4S zejTKGkm@F~&(J+owZ}rj3G@f3w^cbA;tk;#Lpgz7)jQxWrz3nCs-t-PQ@$nqC)`8a z2fyV0fc9y;74rkx1?2$!ayyeBkzT027{Ue4kMa)X8OrzM$5bCszM%6G9;5$?_asy& z57k?IAIj&HhY0^Dp70)F#rFpVbPpcN=iL90esT!we;l2D30@b^C zFKQ$|L>z?oYpPxcht93;5BlbIAe_MaFX3d6?!zP>)su*$iKKtxkMH9MPaDY}5tn4D z-;gi7-{!bQ=OaI%c=O0yPTZgDKy@_Wl&a5#M33>r=)U0R=gvT!E1)C;OFW- zkpH>=QJsqVmOVI+=gh!ZAH9Dlk$?T=k=tv>UX;dG z&VKcs`;JTYsb|t+HeQn6E}gk$?vg#y<$wGNDD?8@>!cZr|M0G)lD&0M`ue|)uKFZn zhx7rguAIGFvPM2Y*OD{jS+x5GSccgdkd+R5*spq8btrnR1M)JLW4Oa9^3iYe+ zoR^kdIyC9@-#?Pt#y{A%@2BUaU+z^lJS4?z{QkVhTHcmYe%I0T)Mo?IA8t$3Pkv-j zdhr&8!AWVQ!uHIE*gquJ%}F@%v-UaraQ{QnVs+tJY0(oq|C+VvptJ|1YI^Dz%5hGL z`xi%5{mq|B0foKku*CK7j`W|(acc)8RoqWLm(H!3_}g30os#_O!zJndWq<72Y8jCD zet(m`Qq)&@SW=I1%b=uCubFs2I(x_C&$N!eEGb&Nbm)k*UQyp||1GIa;(1A#eX#Gm zq_T@TE^YdB{u|CsAK>}V;`s(7bN_*F?!0ge+cT)QL172d8`taSlB(7X|0$_zO4}=) z{`&^l;sccbu+aZgpD6|%l)|bYhom2X)-V6#UDVg7lB&*xPtgyKN&l^wd-^-L@2BV& zrz9}?kN@(E^QhnVQ6K%%RpmIJ?vP#pYo*2XOR8FadqT*e9_ytK1RXF3ll(zSR~_JE zNzrmt#R2r6_pv{S^6!;W)q@?CRCoRUE-6`6;2v?FOod(5hf+vY%pr;U?_r6Le=L|xK{k&bVWS_KJ72qiHKQ3{6Ix2yafGMw`KkSwM$5V&`Y* z$Dg47_eos8M=+j_Nosif_#pb@cDj8iNaf6zbpX=fa{!) zR;YphrO*eL=M3ueBF5$GNPhw4KZoZZL^*dOP8>#mIfCOyr5`CU(R5hYnd8iP)W;hV z$F09fDjZyX5B2<-^u;d}py-#l|D48suc7~5!ucH{-g!Jg4L4!p7WyGtK z(qTZu4a<(AU%n%$ZuiXR=s&MXJRe_{R5+RRfzT_*v4fI=ehDWoBmWCX_g87H3P=}) zT~#>F-6<(({o}u!z<4={b~}%D*@1D|k92Pf`TwT4`(Ll3Ji8>-&A$0mQr&gN0mS`J z1P)T1a@;$G_;Nu~yz`qocj3NABsCo0I4-Gh{lpQ8slSubd*GGV{%beJ`Dx+jJP(on z22j2;NOw)dJc_nFSH!<#XqRgO-?;uxV?H^8 z@wF5E=cL5#d_+>y+}VSe-w)tpam`9F_JjwCx zZM5@Yl>4~IH{~jTA3|I_i2TlDoplcJ=>yDvpQ9Y-(eF+QdrRgMIR~&ki8y)| zR~{{C$BFDM4a>b=?kn&uLykR zdG>Rx8@|SNKi0GRu#O^}Iw0x=UeA1vdFn$EH)Ic9$DctQ{sjHw@3`;hh-dE#`|-Fq zARUD27E-Cm2VA}*SQj3~JVbsofcS7y)K&a`aShK+@ko9`e*LA$+q~XCCvcS4-CrW^ zp2PUOfN``RabN)Lb57Jz9G6ZZp8-7AA+Zn7TSM{3{rr8z)i=exhu>!gMBTyj=vTrX zl-~)Lczw82Qf_JApLZGa{%OR;v*<7Hqd$Kx@&UgG8Dy@nOK9g~I8XPPBe?FAs9$*f zbQ1H`70f4R(eK_9c~rRt>@7Wk_n9wHjx%`wxQy#hA^)L!2hS^C2tVUEbQp2!g18Uz z`_*~uUqJucgLrWW@pd1^RiC(z@O#!E*0X1@9@~v|-zjnbBK)IxBzy7t`y%4)39P%$ zVZQ!K)Q@zJ<#Bxx>qFA#PQ>%CFdm2QWxS50d%`)y0mF&**(Pa_u{C<20 z@#Cn#X@1ZC9P_{_%tIfDdkW=oe%~3ud%!MHU-Em=$KoEz@%C*|zYxyS{gv*C+^;W+ zxaRfkhXSv7et8q|@T|Zc9#?}HZI;7Fd<}8rn7F_5_Y{YP{kUFEi@KKIudfPxQ%?67Mm%zkP=M_lkO#zc2cSzzZIK zm#{8-N91MxKInC_xH&KG zGxw{Cx{Cfl_uPFLZ@a~NCtg>5jq*|5bP(T1{R46S8_bKx#rre}S(LHD6uSQlSJyL^iNz6m>YcqXS2fCejj?>~E$?=Kqb?5N>N3dSLiuK-kq(3V1Dd8*CyZrsb1*~(A zp`0f$KMmyxx_|TciRT4Ab9=vyID7^7Ifi!lRQMCmk5_Tshd55}Df>j6^K%_Se7%7A z^eW=iN2r(cc)zgn9OekcYqj{Se;=9T#}U{q_pJ z5BUqW7esx*uFJ z@0_?7ar+F2dV|+(ABuZCzeiF%+b`-uejmDw{_+*#^jXyRalEg5iTUCb((T3huY{gC z9`DDxdcSzT$Nl9C@m`SL(^9^p_j-K%V|>rokLTKnc)3T^={(OJ6!#=v*Bq79FAX&g z`wW;{^BFMZTSKJ=_}b9Jy-i-_TSHByrBS7^-||hNG5oDfj4n>cq74c9xTu5#U34sq z)#(gzvGJo4Vs)dVqYZ|bgs4&R`Y1zeY0@C&Ixbch3(NI!(fZhErq@O3qen;S zbjq_qAIqZkqxEBSx~SMFeT-fgqkb<*4}AkO#3`fE(NR$>Mjy>|2KeGqRJ046pPnK1IKt>T&!NF9~TwN^en~@6=jG4Ui!Eg79AbKbkR|(?p#?uN!4Bz$8#J zeS+Sg8?ByzCB(+U;dC$#2Lx%^O>s;Q3ehLPKnxr-R&N09z@bLN*%I_Iae7^%4o(pd zdxDDMbOr;Q)1WiN>qaN)qLo8~!`Gk~88g0XR>tBDTsQ_>D~k+qhJ+|!8KuYoR*cofjT!~IhrM+% zQOp3g*6CtEXDlWWjvE(aV549xM*VOW@Q4MMfFl|Vu`#0*rGuD?*q|cCsJevFAPWcv zDugqQ0$qUJ^@=$XbaC+@LP8AuO)$j8#KT_TAW_k9e4Q>145W{RbAfm1^ieShdN>1| z+W=<*zW_EMFYKjwm7++6qb?py0Ed8sfM&suL7eymeY8&3yWsZ=w{(R%_pERI(5u>Ib^oef)Bm(_1x9$q{D;qN`U=+=AI{Opzjg=*?vY+L@&y_Ku(>u!E!&9BRstgpXkV{>F#OUtv3vzKkH+T8J@ zZGZe>-HOVeJ=54x|6o(^s@Ar~hwr+hbo+vhPdsqfN_N}hJ70^ec&u&hPaawDeDm@Z zz4t!aQn$2i_lry3n7?&@|8!?}OZThw)lI9)9=>~J{l7j^(fjbKTLYDy>jE{ao_%u5%FP{H znmaZ;^!(Zdm$Su7N?(1Td{y~lci&z2v!~VvH+t7~ zJh1+*ny&7)HOnjRzWt%*+4pa(k5rXc{^89BfBvVg@{Y>#bv3O^7p&iVSKZy!b&H-| z9eSXx_KB4(_iftq%!<|Z>+X4C>F;i9Yk#P0?H}hYd}T$;l661${kqo{{jhD>Z-3eR z=(28a`^xr3zhB%^wf>>V;*Q3)$fBmE#WnSfk*!rrfBcK>o0s3+y>`{I=NeYsAAa%e zUp&>>{#0A-voFh8a9&H7(%Yz=qb z|MPpE->~uF#y4MC+){IA$M?J2+PfbA*F_Jk`t7pj>J4-28do*0=-F1kb^e<#ZeHE; z+Ov@@YnQ!M`Rj!ZYgTW#$M2CnS%G}!Te2t+cKca*!0D?juL>{r1wCbpN`u9VLhfMD z>zB(HwaT7ZJ`W4$d#XJ7-b(mhg}TbYDoUq?{LC|jh32*d{9d1TW;o<8 z^OsD^ukyQ>_~*`AQ(U~jUlJ@SS`?TDEagBr==2p=miuPO0k7NV4*Nr8g`SequpIIQ z=2n!2Dhp=?{8fRlTp93qJym5s=9c}T)=*hk4!8qeZ*4GK0`kl(FD{YY;WDq!?+-S~ znU75)PM_m4qtuSpfEJ2?dJ$az$gAEEgA+mAOmn{a$y8 zuP9Jo=Jf>OWW}>QKA$|NJS0!^mjt|3{_=pk+*{_AE4{KD3Nd+c84CnTy=+0Lud>M_ z`$|H7P=)OCvZ9hAZ+XC9;tSQzDwJ8M%;%|+%frDyg|D)>jCmExxm8{t3wZs$K$YJs zhsvtl`5}Lax1`8dS>dkog_*Ay4(^%j4tm%uR^<*a3iuaPg{p$yvR0qBvPAazg5E&T z<8_CN{3U*mZ%MJcV#<`T*H`5Z1%tCZo(fhT3K#mzf|fu=B@2X@J5*9uQdC?S4)~Xp zl(CB7VjmnP6rL-G++`*HKu{4d%>02se!08I9Vqe@7KfLWl?RuF!Jxk4khgeQeVMPq zU06ITD2K}ea(qjT&Q|l#`I@W8 zvbrX)F0?cq?Ox%xuoFEjZTO`|{|iOz{BE~AU3 zxh9MS!6qvz8Es5uENudt07rEsGM44cN&_V_tAmXj>zHOXWlf$uCY@zEO>yHbqm$BX z<|KAgBC|}&V#$nUTU8ZJ&vcqisVTrZDSLdL$(6~Rc~&-d6pI5jk6~7`oh3?%x#{Ca z1G&S=9Me)vuoD}dkjApJGVF}mbH`;QJJU_cEGOGF4rnsQgYL$pxF)!=t(nYbHnZe$ zj7=Cn392PmilWyEW0FA;g$!)N(x+!xUFM`zyK!lu1OQvO-@%5kR*?D zP6bQU<=MwE%P828W#uzd?oDh0aAIjm%#~x!9Bnk^IBblKwy>OuKr$6rgP;s{X5(Fn zO5;o&mzHX^nzNY0o;nS5FgY(TGk3f_#c4|b=Tv^<9BG+g4>rLD_IFKZmI+WX*^`sl z#587PuF>{1@V?CPdG-luAX!!tY-ncbcIL91$FcN@<5_x2cD9MJOv@BkrsBA^WH!wX z3dm1(8DXEK8AZ-Xvu`eNB`2r2?D^SA1=*8LvoqWdlOs1JHP1fFmOia0%bH|LwwP?r z;v8dk@)VOXGtH9Y$|$nh9kv{^$&_ukSxlxhQ@TCZHrWDE;x=YkOy=YilhI-~+S9ET zOP<-9IVZzvGFmO>Tg*16IjbZk#hGbKHky(gGc!y%W@GlGxh6|`j(KvL(QKNUmTNb< zvQ3kclG2i_=9IJ?+thTI*=WzocBdp;jag|~IY~ydEy?I`*=O2k7aFsz7PloW!|HNn z8$IcBY$lrpWX>}snQaATm)&SGr6f(yHcv9=*e%v6MyJ(MFv)I_QYTw2Mn{G*%UEbl zGS4(U@zTWHFnPGp3nc4!b2k+3rjM!<+36yUA+GF0dDwCTC??d|8uoryHl5 zyvZ{lHcU2?{T3@&F>lfo^JMGfWRt^Yn_if0cQ{SCW=mFv(KRV~mZfl#F()S%9L!{z zWU`oMIE*>QoM|>wZf2g{m6mUESZ%rKnT0lwX>y8WcTP2{ck1r%_6Dzmp8XU178^KhGs=g zr#jbA-`v|{fUms6XNT*6zOz^P9C*`A{w44x$M7$y(^t?tp!QWhgI=bz*M0gN*1^|{ zyJ|YR-~;BcWmj8!FX&2nYH05*)v2EsZ&1H69#svWUWbp;E8j||57bw$Xy~d@Kc0RM zh*Q(m1)rW@-`f*Y-PlsIRDCqpw6wIX?5wWuZijCq!`I)dTWV?>S~`0-cXro;ezxFm fbAzI+l})RfRyVC_THCa)X?@d%ru!Qn>CO9pc7GJo literal 0 HcmV?d00001 diff --git a/openml/tests.test_runs.test_run.TestRun.test_offline_and_online_run_identical/org/openml/test/datasets/20/description.xml b/openml/tests.test_runs.test_run.TestRun.test_offline_and_online_run_identical/org/openml/test/datasets/20/description.xml new file mode 100644 index 000000000..a8ca546c0 --- /dev/null +++ b/openml/tests.test_runs.test_run.TestRun.test_offline_and_online_run_identical/org/openml/test/datasets/20/description.xml @@ -0,0 +1,98 @@ + + 20 + diabetes + 1 + **Author**: +**Source**: Unknown - +**Please cite**: + +1. Title: Pima Indians Diabetes Database + + 2. Sources: + (a) Original owners: National Institute of Diabetes and Digestive and + Kidney Diseases + (b) Donor of database: Vincent Sigillito (vgs@aplcen.apl.jhu.edu) + Research Center, RMI Group Leader + Applied Physics Laboratory + The Johns Hopkins University + Johns Hopkins Road + Laurel, MD 20707 + (301) 953-6231 + (c) Date received: 9 May 1990 + + 3. Past Usage: + 1. Smith,~J.~W., Everhart,~J.~E., Dickson,~W.~C., Knowler,~W.~C., & + Johannes,~R.~S. (1988). Using the ADAP learning algorithm to forecast + the onset of diabetes mellitus. In {it Proceedings of the Symposium + on Computer Applications and Medical Care} (pp. 261--265). IEEE + Computer Society Press. + + The diagnostic, binary-valued variable investigated is whether the + patient shows signs of diabetes according to World Health Organization + criteria (i.e., if the 2 hour post-load plasma glucose was at least + 200 mg/dl at any survey examination or if found during routine medical + care). The population lives near Phoenix, Arizona, USA. + + Results: Their ADAP algorithm makes a real-valued prediction between + 0 and 1. This was transformed into a binary decision using a cutoff of + 0.448. Using 576 training instances, the sensitivity and specificity + of their algorithm was 76% on the remaining 192 instances. + + 4. Relevant Information: + Several constraints were placed on the selection of these instances from + a larger database. In particular, all patients here are females at + least 21 years old of Pima Indian heritage. ADAP is an adaptive learning + routine that generates and executes digital analogs of perceptron-like + devices. It is a unique algorithm; see the paper for details. + + 5. Number of Instances: 768 + + 6. Number of Attributes: 8 plus class + + 7. For Each Attribute: (all numeric-valued) + 1. Number of times pregnant + 2. Plasma glucose concentration a 2 hours in an oral glucose tolerance test + 3. Diastolic blood pressure (mm Hg) + 4. Triceps skin fold thickness (mm) + 5. 2-Hour serum insulin (mu U/ml) + 6. Body mass index (weight in kg/(height in m)^2) + 7. Diabetes pedigree function + 8. Age (years) + 9. Class variable (0 or 1) + + 8. Missing Attribute Values: None + + 9. Class Distribution: (class value 1 is interpreted as "tested positive for + diabetes") + + Class Value Number of instances + 0 500 + 1 268 + + 10. Brief statistical analysis: + + Attribute number: Mean: Standard Deviation: + 1. 3.8 3.4 + 2. 120.9 32.0 + 3. 69.1 19.4 + 4. 20.5 16.0 + 5. 79.8 115.2 + 6. 32.0 7.9 + 7. 0.5 0.3 + 8. 33.2 11.8 + + + + + + + Relabeled values in attribute 'class' + From: 0 To: tested_negative + From: 1 To: tested_positive + 1 + ARFF + 2014-04-06T23:22:13 + Public https://test.openml.org/data/v1/download/20/diabetes.arff + 20 class 1 study_14 public active + 2025-06-16 08:10:37 3cbaa3e54586aa88cf6aacb4033e4470 + diff --git a/openml/tests.test_runs.test_run.TestRun.test_offline_and_online_run_identical/org/openml/test/datasets/20/features.xml b/openml/tests.test_runs.test_run.TestRun.test_offline_and_online_run_identical/org/openml/test/datasets/20/features.xml new file mode 100644 index 000000000..cfbafaec6 --- /dev/null +++ b/openml/tests.test_runs.test_run.TestRun.test_offline_and_online_run_identical/org/openml/test/datasets/20/features.xml @@ -0,0 +1,85 @@ + + + 0 + preg + numeric + false + false + false + 0 + + + 1 + plas + numeric + false + false + false + 0 + + + 2 + pres + numeric + false + false + false + 0 + + + 3 + skin + numeric + false + false + false + 0 + + + 4 + insu + numeric + false + false + false + 0 + + + 5 + mass + numeric + false + false + false + 0 + + + 6 + pedi + numeric + false + false + false + 0 + + + 7 + age + numeric + false + false + false + 0 + + + 8 + class + nominal + tested_negative + tested_positive + true + false + false + 0 + + diff --git a/openml/tests.test_runs.test_run.TestRun.test_offline_and_online_run_identical/org/openml/test/datasets/20/features.xml.pkl b/openml/tests.test_runs.test_run.TestRun.test_offline_and_online_run_identical/org/openml/test/datasets/20/features.xml.pkl new file mode 100644 index 0000000000000000000000000000000000000000..b6dcf8ef3a240b2331044ee61a719b90706a1b0d GIT binary patch literal 598 zcmaLUy-ve05C`y(I7v(S5Ca{H!pvY~G*dn&0*sfqeg54YDeL1HscnO)T zyI=l3`98>Zl_ul&?ysxFU8x?V=#~vNRD;pup?(Hx>;T?fJYxId{uaA;``VYk`Skd+ z%eide)nf>eR3Ik(0IhfPkX4(v9!sUP0tUYE?o2AdCGF}h?JQ`&a+la!!%z#ZHJ9z7 zfqBPD8r7+m2WQvS5zBUWvI5T~UerlZGk zIf*z4oJ(z|c^>gRa6$Dy!xRxO#@V6a)9GczOXL}CVOq~3Jwu&u@E!NV?6%|C;t5xK aZa^DoY6&ehe2a@bRC=ZPSb^X7w#y$`Q_NNX literal 0 HcmV?d00001 diff --git a/openml/tests.test_runs.test_run.TestRun.test_offline_and_online_run_identical/org/openml/test/flows/205905/flow.xml b/openml/tests.test_runs.test_run.TestRun.test_offline_and_online_run_identical/org/openml/test/flows/205905/flow.xml new file mode 100644 index 000000000..bda310c1e --- /dev/null +++ b/openml/tests.test_runs.test_run.TestRun.test_offline_and_online_run_identical/org/openml/test/flows/205905/flow.xml @@ -0,0 +1,546 @@ + + + 205905 +1159 +TESTa8a9af7f85sklearn.pipeline.Pipeline(cat_handling=sklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.preprocessing._encoders.OneHotEncoder),imp=sklearn.impute._base.SimpleImputer,classifier=sklearn.dummy.DummyClassifier) +sklearn.Pipeline(ColumnTransformer,SimpleImputer,DummyClassifier) +sklearn.pipeline.Pipeline +1 +openml==0.16.0,sklearn==1.7.2 +A sequence of data transformers with an optional final predictor. + +`Pipeline` allows you to sequentially apply a list of transformers to +preprocess the data and, if desired, conclude the sequence with a final +:term:`predictor` for predictive modeling. + +Intermediate steps of the pipeline must be transformers, that is, they +must implement `fit` and `transform` methods. +The final :term:`estimator` only needs to implement `fit`. +The transformers in the pipeline can be cached using ``memory`` argument. + +The purpose of the pipeline is to assemble several steps that can be +cross-validated together while setting different parameters. For this, it +enables setting parameters of the various steps using their names and the +parameter name separated by a `'__'`, as in the example below. A step's +estimator may be replaced entirely by setting the parameter with its name +to another estimator, or a transformer removed by setting it to +`'passthrough'` or `None`. + +For an example use case of `Pipeline` combined with +:class:`~s... +2025-11-15T10:47:52 +English +sklearn==1.7.2 +numpy>=1.22.0 +scipy>=1.8.0 +joblib>=1.2.0 +threadpoolctl>=3.1.0 + + memory + str or object with the joblib + null + Used to cache the fitted transformers of the pipeline. The last step + will never be cached, even if it is a transformer. By default, no + caching is performed. If a string is given, it is the path to the + caching directory. Enabling caching triggers a clone of the transformers + before fitting. Therefore, the transformer instance given to the + pipeline cannot be inspected directly. Use the attribute ``named_steps`` + or ``steps`` to inspect estimators within the pipeline. Caching the + transformers is advantageous when fitting is time consuming. See + :ref:`sphx_glr_auto_examples_neighbors_plot_caching_nearest_neighbors.py` + for an example on how to enable caching + + + steps + list of tuples + [{"oml-python:serialized_object": "component_reference", "value": {"key": "cat_handling", "step_name": "cat_handling"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "imp", "step_name": "imp"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "classifier", "step_name": "classifier"}}] + List of (name of step, estimator) tuples that are to be chained in + sequential order. To be compatible with the scikit-learn API, all steps + must define `fit`. All non-last steps must also define `transform`. See + :ref:`Combining Estimators <combining_estimators>` for more details + + + transform_input + list of str + null + The names of the :term:`metadata` parameters that should be transformed by the + pipeline before passing it to the step consuming it + + This enables transforming some input arguments to ``fit`` (other than ``X``) + to be transformed by the steps of the pipeline up to the step which requires + them. Requirement is defined via :ref:`metadata routing <metadata_routing>` + For instance, this can be used to pass a validation set through the pipeline + + You can only set this if metadata routing is enabled, which you + can enable using ``sklearn.set_config(enable_metadata_routing=True)`` + + .. versionadded:: 1.6 + + + verbose + bool + false + If True, the time elapsed while fitting each step will be printed as it + is completed. + + + cat_handling + + + 205906 +1159 +TESTa8a9af7f85sklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.preprocessing._encoders.OneHotEncoder) +sklearn.ColumnTransformer +sklearn.compose._column_transformer.ColumnTransformer +1 +openml==0.16.0,sklearn==1.7.2 +Applies transformers to columns of an array or pandas DataFrame. + +This estimator allows different columns or column subsets of the input +to be transformed separately and the features generated by each transformer +will be concatenated to form a single feature space. +This is useful for heterogeneous or columnar data, to combine several +feature extraction mechanisms or transformations into a single transformer. +2025-11-15T10:47:52 +English +sklearn==1.7.2 +numpy>=1.22.0 +scipy>=1.8.0 +joblib>=1.2.0 +threadpoolctl>=3.1.0 + + force_int_remainder_cols + bool + "deprecated" + This parameter has no effect + + .. note:: + If you do not access the list of columns for the remainder columns + in the `transformers_` fitted attribute, you do not need to set + this parameter + + .. versionadded:: 1.5 + + .. versionchanged:: 1.7 + The default value for `force_int_remainder_cols` will change from + `True` to `False` in version 1.7 + + .. deprecated:: 1.7 + `force_int_remainder_cols` is deprecated and will be removed in 1.9. + + + n_jobs + int + null + Number of jobs to run in parallel + ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context + ``-1`` means using all processors. See :term:`Glossary <n_jobs>` + for more details + + + remainder + + "passthrough" + + + + sparse_threshold + float + 0.3 + If the output of the different transformers contains sparse matrices, + these will be stacked as a sparse matrix if the overall density is + lower than this value. Use ``sparse_threshold=0`` to always return + dense. When the transformed output consists of all dense data, the + stacked result will be dense, and this keyword will be ignored + + + transformer_weights + dict + null + Multiplicative weights for features per transformer. The output of the + transformer is multiplied by these weights. Keys are transformer names, + values the weights + + + transformers + list of tuples + [{"oml-python:serialized_object": "component_reference", "value": {"key": "cat", "step_name": "cat", "argument_1": {"oml-python:serialized_object": "function", "value": "tests.test_runs.test_run._cat_col_selector"}}}] + List of (name, transformer, columns) tuples specifying the + transformer objects to be applied to subsets of the data + + + verbose + bool + false + If True, the time elapsed while fitting each transformer will be + printed as it is completed + + + verbose_feature_names_out + bool + true + - If True, :meth:`ColumnTransformer.get_feature_names_out` will prefix + all feature names with the name of the transformer that generated that + feature. It is equivalent to setting + `verbose_feature_names_out="{transformer_name}__{feature_name}"` + - If False, :meth:`ColumnTransformer.get_feature_names_out` will not + prefix any feature names and will error if feature names are not + unique + - If ``Callable[[str, str], str]``, + :meth:`ColumnTransformer.get_feature_names_out` will rename all the features + using the name of the transformer. The first argument of the callable is the + transformer name and the second argument is the feature name. The returned + string will be the new feature name + - If ``str``, it must be a string ready for formatting. The given string will + be formatted using two field names: ``transformer_name`` and ``feature_name`` + e.g. ``"{feature_name}__{transformer_name}"``. See :meth:`str.format` method + from the standard ... + + + cat + + + 205907 +1159 +TESTa8a9af7f85sklearn.preprocessing._encoders.OneHotEncoder +sklearn.OneHotEncoder +sklearn.preprocessing._encoders.OneHotEncoder +1 +openml==0.16.0,sklearn==1.7.2 +Encode categorical features as a one-hot numeric array. + +The input to this transformer should be an array-like of integers or +strings, denoting the values taken on by categorical (discrete) features. +The features are encoded using a one-hot (aka 'one-of-K' or 'dummy') +encoding scheme. This creates a binary column for each category and +returns a sparse matrix or dense array (depending on the ``sparse_output`` +parameter). + +By default, the encoder derives the categories based on the unique values +in each feature. Alternatively, you can also specify the `categories` +manually. + +This encoding is needed for feeding categorical data to many scikit-learn +estimators, notably linear models and SVMs with the standard kernels. + +Note: a one-hot encoding of y labels should use a LabelBinarizer +instead. +2025-11-15T10:47:52 +English +sklearn==1.7.2 +numpy>=1.22.0 +scipy>=1.8.0 +joblib>=1.2.0 +threadpoolctl>=3.1.0 + + categories + 'auto' or a list of array + "auto" + Categories (unique values) per feature: + + - 'auto' : Determine categories automatically from the training data + - list : ``categories[i]`` holds the categories expected in the ith + column. The passed categories should not mix strings and numeric + values within a single feature, and should be sorted in case of + numeric values + + The used categories can be found in the ``categories_`` attribute + + .. versionadded:: 0.20 + +drop : {'first', 'if_binary'} or an array-like of shape (n_features,), default=None + Specifies a methodology to use to drop one of the categories per + feature. This is useful in situations where perfectly collinear + features cause problems, such as when feeding the resulting data + into an unregularized linear regression model + + However, dropping one category breaks the symmetry of the original + representation and can therefore induce a bias in downstream models, + for instance for penalized linear classification or regression models + + + drop + + null + + + + dtype + number type + {"oml-python:serialized_object": "type", "value": "np.float64"} + Desired dtype of output + +handle_unknown : {'error', 'ignore', 'infrequent_if_exist', 'warn'}, default='error' + Specifies the way unknown categories are handled during :meth:`transform` + + - 'error' : Raise an error if an unknown category is present during transform + - 'ignore' : When an unknown category is encountered during + transform, the resulting one-hot encoded columns for this feature + will be all zeros. In the inverse transform, an unknown category + will be denoted as None + - 'infrequent_if_exist' : When an unknown category is encountered + during transform, the resulting one-hot encoded columns for this + feature will map to the infrequent category if it exists. The + infrequent category will be mapped to the last position in the + encoding. During inverse transform, an unknown category will be + mapped to the category denoted `'infrequent'` if it exists. If the + `'infrequent'` category does not exist, then :meth:`transform` an... + + + feature_name_combiner + + "concat" + + + + handle_unknown + + "ignore" + + + + max_categories + int + null + Specifies an upper limit to the number of output features for each input + feature when considering infrequent categories. If there are infrequent + categories, `max_categories` includes the category representing the + infrequent categories along with the frequent categories. If `None`, + there is no limit to the number of output features + + .. versionadded:: 1.1 + Read more in the :ref:`User Guide <encoder_infrequent_categories>` + +feature_name_combiner : "concat" or callable, default="concat" + Callable with signature `def callable(input_feature, category)` that returns a + string. This is used to create feature names to be returned by + :meth:`get_feature_names_out` + + `"concat"` concatenates encoded feature name and category with + `feature + "_" + str(category)`.E.g. feature X with values 1, 6, 7 create + feature names `X_1, X_6, X_7` + + .. versionadded:: 1.3 + + + min_frequency + int or float + null + Specifies the minimum frequency below which a category will be + considered infrequent + + - If `int`, categories with a smaller cardinality will be considered + infrequent + + - If `float`, categories with a smaller cardinality than + `min_frequency * n_samples` will be considered infrequent + + .. versionadded:: 1.1 + Read more in the :ref:`User Guide <encoder_infrequent_categories>` + + + sparse_output + bool + true + When ``True``, it returns a :class:`scipy.sparse.csr_matrix`, + i.e. a sparse matrix in "Compressed Sparse Row" (CSR) format + + .. versionadded:: 1.2 + `sparse` was renamed to `sparse_output` + +openml-python +python +scikit-learn +sklearn +sklearn_1.7.2 + + +openml-python +python +scikit-learn +sklearn +sklearn_1.7.2 + + + + imp + + + 205908 +1159 +TESTa8a9af7f85sklearn.impute._base.SimpleImputer +sklearn.SimpleImputer +sklearn.impute._base.SimpleImputer +1 +openml==0.16.0,sklearn==1.7.2 +Univariate imputer for completing missing values with simple strategies. + +Replace missing values using a descriptive statistic (e.g. mean, median, or +most frequent) along each column, or using a constant value. +2025-11-15T10:47:52 +English +sklearn==1.7.2 +numpy>=1.22.0 +scipy>=1.8.0 +joblib>=1.2.0 +threadpoolctl>=3.1.0 + + add_indicator + bool + false + If True, a :class:`MissingIndicator` transform will stack onto output + of the imputer's transform. This allows a predictive estimator + to account for missingness despite imputation. If a feature has no + missing values at fit/train time, the feature won't appear on + the missing indicator even if there are missing values at + transform/test time + + + copy + bool + true + If True, a copy of X will be created. If False, imputation will + be done in-place whenever possible. Note that, in the following cases, + a new copy will always be made, even if `copy=False`: + + - If `X` is not an array of floating values; + - If `X` is encoded as a CSR matrix; + - If `add_indicator=True` + + + fill_value + str or numerical value + null + When strategy == "constant", `fill_value` is used to replace all + occurrences of missing_values. For string or object data types, + `fill_value` must be a string + If `None`, `fill_value` will be 0 when imputing numerical + data and "missing_value" for strings or object data types + + + keep_empty_features + bool + false + If True, features that consist exclusively of missing values when + `fit` is called are returned in results when `transform` is called + The imputed value is always `0` except when `strategy="constant"` + in which case `fill_value` will be used instead + + .. versionadded:: 1.2 + + .. versionchanged:: 1.6 + Currently, when `keep_empty_feature=False` and `strategy="constant"`, + empty features are not dropped. This behaviour will change in version + 1.8. Set `keep_empty_feature=True` to preserve this behaviour. + + + missing_values + int + NaN + The placeholder for the missing values. All occurrences of + `missing_values` will be imputed. For pandas' dataframes with + nullable integer dtypes with missing values, `missing_values` + can be set to either `np.nan` or `pd.NA` + + + strategy + str or Callable + "mean" + The imputation strategy + + - If "mean", then replace missing values using the mean along + each column. Can only be used with numeric data + - If "median", then replace missing values using the median along + each column. Can only be used with numeric data + - If "most_frequent", then replace missing using the most frequent + value along each column. Can be used with strings or numeric data + If there is more than one such value, only the smallest is returned + - If "constant", then replace missing values with fill_value. Can be + used with strings or numeric data + - If an instance of Callable, then replace missing values using the + scalar statistic returned by running the callable over a dense 1d + array containing non-missing values of each column + + .. versionadded:: 0.20 + strategy="constant" for fixed value imputation + + .. versionadded:: 1.5 + strategy=callable for custom value imputation + +openml-python +python +scikit-learn +sklearn +sklearn_1.7.2 + + + + classifier + + + 205909 +1159 +TESTa8a9af7f85sklearn.dummy.DummyClassifier +sklearn.DummyClassifier +sklearn.dummy.DummyClassifier +1 +openml==0.16.0,sklearn==1.7.2 +DummyClassifier makes predictions that ignore the input features. + +This classifier serves as a simple baseline to compare against other more +complex classifiers. + +The specific behavior of the baseline is selected with the `strategy` +parameter. + +All strategies make predictions that ignore the input feature values passed +as the `X` argument to `fit` and `predict`. The predictions, however, +typically depend on values observed in the `y` parameter passed to `fit`. + +Note that the "stratified" and "uniform" strategies lead to +non-deterministic predictions that can be rendered deterministic by setting +the `random_state` parameter if needed. The other strategies are naturally +deterministic and, once fit, always return the same constant prediction +for any value of `X`. +2025-11-15T10:47:52 +English +sklearn==1.7.2 +numpy>=1.22.0 +scipy>=1.8.0 +joblib>=1.2.0 +threadpoolctl>=3.1.0 + + constant + int or str or array + null + The explicit constant as predicted by the "constant" strategy. This + parameter is useful only for the "constant" strategy. + + + random_state + int + null + Controls the randomness to generate the predictions when + ``strategy='stratified'`` or ``strategy='uniform'`` + Pass an int for reproducible output across multiple function calls + See :term:`Glossary <random_state>` + + + strategy + + "prior" + + +openml-python +python +scikit-learn +sklearn +sklearn_1.7.2 + + +openml-python +python +scikit-learn +sklearn +sklearn_1.7.2 + diff --git a/openml/tests.test_runs.test_run.TestRun.test_offline_and_online_run_identical/org/openml/test/locks/datasets.functions.get_dataset b/openml/tests.test_runs.test_run.TestRun.test_offline_and_online_run_identical/org/openml/test/locks/datasets.functions.get_dataset new file mode 100644 index 000000000..e69de29bb diff --git a/openml/tests.test_runs.test_run.TestRun.test_offline_and_online_run_identical/org/openml/test/locks/flows.functions.get_flow b/openml/tests.test_runs.test_run.TestRun.test_offline_and_online_run_identical/org/openml/test/locks/flows.functions.get_flow new file mode 100644 index 000000000..e69de29bb diff --git a/openml/tests.test_runs.test_run.TestRun.test_offline_and_online_run_identical/org/openml/test/locks/runs.functions.get_run b/openml/tests.test_runs.test_run.TestRun.test_offline_and_online_run_identical/org/openml/test/locks/runs.functions.get_run new file mode 100644 index 000000000..e69de29bb diff --git a/openml/tests.test_runs.test_run.TestRun.test_offline_and_online_run_identical/org/openml/test/locks/tasks.functions.get_task b/openml/tests.test_runs.test_run.TestRun.test_offline_and_online_run_identical/org/openml/test/locks/tasks.functions.get_task new file mode 100644 index 000000000..e69de29bb diff --git a/openml/tests.test_runs.test_run.TestRun.test_offline_and_online_run_identical/org/openml/test/tasks/119/datasplits.arff b/openml/tests.test_runs.test_run.TestRun.test_offline_and_online_run_identical/org/openml/test/tasks/119/datasplits.arff new file mode 100644 index 000000000..abd1e10eb --- /dev/null +++ b/openml/tests.test_runs.test_run.TestRun.test_offline_and_online_run_identical/org/openml/test/tasks/119/datasplits.arff @@ -0,0 +1,776 @@ +@relation diabetes_splits + +@attribute type {TRAIN,TEST} +@attribute rowid numeric +@attribute repeat numeric +@attribute fold numeric + +@data +TEST,53,0,0 +TEST,455,0,0 +TEST,101,0,0 +TEST,57,0,0 +TEST,363,0,0 +TEST,16,0,0 +TEST,496,0,0 +TEST,271,0,0 +TEST,511,0,0 +TEST,280,0,0 +TEST,88,0,0 +TEST,270,0,0 +TEST,210,0,0 +TEST,665,0,0 +TEST,156,0,0 +TEST,360,0,0 +TEST,323,0,0 +TEST,528,0,0 +TEST,113,0,0 +TEST,96,0,0 +TEST,107,0,0 +TEST,166,0,0 +TEST,413,0,0 +TEST,565,0,0 +TEST,251,0,0 +TEST,339,0,0 +TEST,317,0,0 +TEST,564,0,0 +TEST,707,0,0 +TEST,518,0,0 +TEST,513,0,0 +TEST,95,0,0 +TEST,371,0,0 +TEST,10,0,0 +TEST,242,0,0 +TEST,727,0,0 +TEST,755,0,0 +TEST,143,0,0 +TEST,763,0,0 +TEST,110,0,0 +TEST,562,0,0 +TEST,481,0,0 +TEST,126,0,0 +TEST,414,0,0 +TEST,258,0,0 +TEST,186,0,0 +TEST,256,0,0 +TEST,713,0,0 +TEST,254,0,0 +TEST,275,0,0 +TEST,197,0,0 +TEST,542,0,0 +TEST,4,0,0 +TEST,428,0,0 +TEST,387,0,0 +TEST,244,0,0 +TEST,265,0,0 +TEST,722,0,0 +TEST,58,0,0 +TEST,79,0,0 +TEST,161,0,0 +TEST,619,0,0 +TEST,349,0,0 +TEST,702,0,0 +TEST,756,0,0 +TEST,216,0,0 +TEST,396,0,0 +TEST,180,0,0 +TEST,489,0,0 +TEST,669,0,0 +TEST,567,0,0 +TEST,283,0,0 +TEST,624,0,0 +TEST,647,0,0 +TEST,310,0,0 +TEST,127,0,0 +TEST,142,0,0 +TEST,680,0,0 +TEST,499,0,0 +TEST,545,0,0 +TEST,8,0,0 +TEST,404,0,0 +TEST,698,0,0 +TEST,671,0,0 +TEST,644,0,0 +TEST,505,0,0 +TEST,135,0,0 +TEST,613,0,0 +TEST,469,0,0 +TEST,507,0,0 +TEST,80,0,0 +TEST,28,0,0 +TEST,751,0,0 +TEST,337,0,0 +TEST,679,0,0 +TEST,348,0,0 +TEST,332,0,0 +TEST,120,0,0 +TEST,708,0,0 +TEST,429,0,0 +TEST,276,0,0 +TEST,534,0,0 +TEST,350,0,0 +TEST,610,0,0 +TEST,399,0,0 +TEST,516,0,0 +TEST,29,0,0 +TEST,559,0,0 +TEST,267,0,0 +TEST,192,0,0 +TEST,355,0,0 +TEST,451,0,0 +TEST,124,0,0 +TEST,392,0,0 +TEST,141,0,0 +TEST,64,0,0 +TEST,47,0,0 +TEST,20,0,0 +TEST,657,0,0 +TEST,325,0,0 +TEST,733,0,0 +TEST,288,0,0 +TEST,576,0,0 +TEST,302,0,0 +TEST,160,0,0 +TEST,227,0,0 +TEST,395,0,0 +TEST,400,0,0 +TEST,735,0,0 +TEST,705,0,0 +TEST,523,0,0 +TEST,290,0,0 +TEST,19,0,0 +TEST,485,0,0 +TEST,551,0,0 +TEST,571,0,0 +TEST,548,0,0 +TEST,645,0,0 +TEST,724,0,0 +TEST,703,0,0 +TEST,261,0,0 +TEST,488,0,0 +TEST,83,0,0 +TEST,51,0,0 +TEST,397,0,0 +TEST,720,0,0 +TEST,345,0,0 +TEST,655,0,0 +TEST,344,0,0 +TEST,449,0,0 +TEST,99,0,0 +TEST,762,0,0 +TEST,42,0,0 +TEST,578,0,0 +TEST,386,0,0 +TEST,108,0,0 +TEST,690,0,0 +TEST,31,0,0 +TEST,281,0,0 +TEST,201,0,0 +TEST,23,0,0 +TEST,699,0,0 +TEST,618,0,0 +TEST,379,0,0 +TEST,617,0,0 +TEST,585,0,0 +TEST,752,0,0 +TEST,693,0,0 +TEST,182,0,0 +TEST,11,0,0 +TEST,457,0,0 +TEST,477,0,0 +TEST,508,0,0 +TEST,685,0,0 +TEST,553,0,0 +TEST,358,0,0 +TEST,111,0,0 +TEST,581,0,0 +TEST,38,0,0 +TEST,35,0,0 +TEST,74,0,0 +TEST,324,0,0 +TEST,208,0,0 +TEST,361,0,0 +TEST,438,0,0 +TEST,486,0,0 +TEST,549,0,0 +TEST,666,0,0 +TEST,482,0,0 +TEST,173,0,0 +TEST,492,0,0 +TEST,279,0,0 +TEST,656,0,0 +TEST,580,0,0 +TEST,224,0,0 +TEST,639,0,0 +TEST,484,0,0 +TEST,36,0,0 +TEST,653,0,0 +TEST,506,0,0 +TEST,114,0,0 +TEST,130,0,0 +TEST,106,0,0 +TEST,341,0,0 +TEST,590,0,0 +TEST,321,0,0 +TEST,378,0,0 +TEST,730,0,0 +TEST,259,0,0 +TEST,638,0,0 +TEST,417,0,0 +TEST,425,0,0 +TEST,424,0,0 +TEST,697,0,0 +TEST,470,0,0 +TEST,204,0,0 +TEST,72,0,0 +TEST,568,0,0 +TEST,103,0,0 +TEST,230,0,0 +TEST,497,0,0 +TEST,441,0,0 +TEST,539,0,0 +TEST,533,0,0 +TEST,326,0,0 +TEST,90,0,0 +TEST,331,0,0 +TEST,311,0,0 +TEST,427,0,0 +TEST,416,0,0 +TEST,44,0,0 +TEST,131,0,0 +TEST,696,0,0 +TEST,448,0,0 +TEST,346,0,0 +TEST,134,0,0 +TEST,700,0,0 +TEST,359,0,0 +TEST,426,0,0 +TEST,75,0,0 +TEST,603,0,0 +TEST,689,0,0 +TEST,320,0,0 +TEST,194,0,0 +TEST,709,0,0 +TEST,398,0,0 +TEST,212,0,0 +TEST,343,0,0 +TEST,169,0,0 +TEST,695,0,0 +TEST,249,0,0 +TEST,676,0,0 +TEST,732,0,0 +TRAIN,611,0,0 +TRAIN,714,0,0 +TRAIN,27,0,0 +TRAIN,365,0,0 +TRAIN,164,0,0 +TRAIN,411,0,0 +TRAIN,94,0,0 +TRAIN,123,0,0 +TRAIN,243,0,0 +TRAIN,473,0,0 +TRAIN,466,0,0 +TRAIN,629,0,0 +TRAIN,59,0,0 +TRAIN,203,0,0 +TRAIN,563,0,0 +TRAIN,52,0,0 +TRAIN,370,0,0 +TRAIN,476,0,0 +TRAIN,701,0,0 +TRAIN,81,0,0 +TRAIN,226,0,0 +TRAIN,150,0,0 +TRAIN,437,0,0 +TRAIN,584,0,0 +TRAIN,181,0,0 +TRAIN,22,0,0 +TRAIN,741,0,0 +TRAIN,684,0,0 +TRAIN,596,0,0 +TRAIN,179,0,0 +TRAIN,636,0,0 +TRAIN,60,0,0 +TRAIN,495,0,0 +TRAIN,335,0,0 +TRAIN,297,0,0 +TRAIN,375,0,0 +TRAIN,601,0,0 +TRAIN,670,0,0 +TRAIN,504,0,0 +TRAIN,435,0,0 +TRAIN,479,0,0 +TRAIN,7,0,0 +TRAIN,445,0,0 +TRAIN,442,0,0 +TRAIN,278,0,0 +TRAIN,625,0,0 +TRAIN,40,0,0 +TRAIN,715,0,0 +TRAIN,667,0,0 +TRAIN,140,0,0 +TRAIN,9,0,0 +TRAIN,658,0,0 +TRAIN,419,0,0 +TRAIN,316,0,0 +TRAIN,459,0,0 +TRAIN,289,0,0 +TRAIN,409,0,0 +TRAIN,736,0,0 +TRAIN,623,0,0 +TRAIN,73,0,0 +TRAIN,649,0,0 +TRAIN,630,0,0 +TRAIN,637,0,0 +TRAIN,675,0,0 +TRAIN,456,0,0 +TRAIN,248,0,0 +TRAIN,384,0,0 +TRAIN,91,0,0 +TRAIN,719,0,0 +TRAIN,104,0,0 +TRAIN,175,0,0 +TRAIN,760,0,0 +TRAIN,468,0,0 +TRAIN,535,0,0 +TRAIN,514,0,0 +TRAIN,712,0,0 +TRAIN,367,0,0 +TRAIN,501,0,0 +TRAIN,643,0,0 +TRAIN,688,0,0 +TRAIN,728,0,0 +TRAIN,100,0,0 +TRAIN,115,0,0 +TRAIN,305,0,0 +TRAIN,446,0,0 +TRAIN,129,0,0 +TRAIN,615,0,0 +TRAIN,87,0,0 +TRAIN,462,0,0 +TRAIN,515,0,0 +TRAIN,250,0,0 +TRAIN,557,0,0 +TRAIN,382,0,0 +TRAIN,33,0,0 +TRAIN,257,0,0 +TRAIN,620,0,0 +TRAIN,151,0,0 +TRAIN,102,0,0 +TRAIN,209,0,0 +TRAIN,232,0,0 +TRAIN,652,0,0 +TRAIN,205,0,0 +TRAIN,753,0,0 +TRAIN,319,0,0 +TRAIN,674,0,0 +TRAIN,12,0,0 +TRAIN,309,0,0 +TRAIN,146,0,0 +TRAIN,433,0,0 +TRAIN,569,0,0 +TRAIN,460,0,0 +TRAIN,329,0,0 +TRAIN,380,0,0 +TRAIN,660,0,0 +TRAIN,600,0,0 +TRAIN,537,0,0 +TRAIN,170,0,0 +TRAIN,725,0,0 +TRAIN,252,0,0 +TRAIN,595,0,0 +TRAIN,529,0,0 +TRAIN,391,0,0 +TRAIN,298,0,0 +TRAIN,766,0,0 +TRAIN,369,0,0 +TRAIN,664,0,0 +TRAIN,46,0,0 +TRAIN,662,0,0 +TRAIN,686,0,0 +TRAIN,55,0,0 +TRAIN,731,0,0 +TRAIN,472,0,0 +TRAIN,362,0,0 +TRAIN,461,0,0 +TRAIN,517,0,0 +TRAIN,218,0,0 +TRAIN,14,0,0 +TRAIN,597,0,0 +TRAIN,262,0,0 +TRAIN,579,0,0 +TRAIN,18,0,0 +TRAIN,614,0,0 +TRAIN,420,0,0 +TRAIN,268,0,0 +TRAIN,296,0,0 +TRAIN,710,0,0 +TRAIN,586,0,0 +TRAIN,500,0,0 +TRAIN,672,0,0 +TRAIN,3,0,0 +TRAIN,612,0,0 +TRAIN,530,0,0 +TRAIN,406,0,0 +TRAIN,554,0,0 +TRAIN,582,0,0 +TRAIN,313,0,0 +TRAIN,32,0,0 +TRAIN,682,0,0 +TRAIN,711,0,0 +TRAIN,494,0,0 +TRAIN,291,0,0 +TRAIN,157,0,0 +TRAIN,439,0,0 +TRAIN,412,0,0 +TRAIN,723,0,0 +TRAIN,185,0,0 +TRAIN,54,0,0 +TRAIN,372,0,0 +TRAIN,206,0,0 +TRAIN,207,0,0 +TRAIN,17,0,0 +TRAIN,93,0,0 +TRAIN,187,0,0 +TRAIN,13,0,0 +TRAIN,122,0,0 +TRAIN,198,0,0 +TRAIN,282,0,0 +TRAIN,651,0,0 +TRAIN,15,0,0 +TRAIN,294,0,0 +TRAIN,61,0,0 +TRAIN,550,0,0 +TRAIN,650,0,0 +TRAIN,503,0,0 +TRAIN,376,0,0 +TRAIN,415,0,0 +TRAIN,430,0,0 +TRAIN,632,0,0 +TRAIN,155,0,0 +TRAIN,721,0,0 +TRAIN,604,0,0 +TRAIN,758,0,0 +TRAIN,171,0,0 +TRAIN,334,0,0 +TRAIN,353,0,0 +TRAIN,631,0,0 +TRAIN,336,0,0 +TRAIN,1,0,0 +TRAIN,540,0,0 +TRAIN,737,0,0 +TRAIN,49,0,0 +TRAIN,223,0,0 +TRAIN,71,0,0 +TRAIN,729,0,0 +TRAIN,184,0,0 +TRAIN,21,0,0 +TRAIN,233,0,0 +TRAIN,408,0,0 +TRAIN,6,0,0 +TRAIN,132,0,0 +TRAIN,431,0,0 +TRAIN,524,0,0 +TRAIN,366,0,0 +TRAIN,67,0,0 +TRAIN,199,0,0 +TRAIN,147,0,0 +TRAIN,681,0,0 +TRAIN,663,0,0 +TRAIN,137,0,0 +TRAIN,538,0,0 +TRAIN,43,0,0 +TRAIN,167,0,0 +TRAIN,82,0,0 +TRAIN,602,0,0 +TRAIN,307,0,0 +TRAIN,340,0,0 +TRAIN,266,0,0 +TRAIN,318,0,0 +TRAIN,678,0,0 +TRAIN,552,0,0 +TRAIN,588,0,0 +TRAIN,178,0,0 +TRAIN,532,0,0 +TRAIN,152,0,0 +TRAIN,63,0,0 +TRAIN,593,0,0 +TRAIN,217,0,0 +TRAIN,607,0,0 +TRAIN,136,0,0 +TRAIN,622,0,0 +TRAIN,231,0,0 +TRAIN,191,0,0 +TRAIN,295,0,0 +TRAIN,97,0,0 +TRAIN,421,0,0 +TRAIN,333,0,0 +TRAIN,642,0,0 +TRAIN,677,0,0 +TRAIN,229,0,0 +TRAIN,543,0,0 +TRAIN,592,0,0 +TRAIN,583,0,0 +TRAIN,92,0,0 +TRAIN,634,0,0 +TRAIN,215,0,0 +TRAIN,159,0,0 +TRAIN,76,0,0 +TRAIN,541,0,0 +TRAIN,314,0,0 +TRAIN,546,0,0 +TRAIN,574,0,0 +TRAIN,168,0,0 +TRAIN,158,0,0 +TRAIN,434,0,0 +TRAIN,292,0,0 +TRAIN,86,0,0 +TRAIN,716,0,0 +TRAIN,526,0,0 +TRAIN,154,0,0 +TRAIN,743,0,0 +TRAIN,139,0,0 +TRAIN,691,0,0 +TRAIN,483,0,0 +TRAIN,444,0,0 +TRAIN,34,0,0 +TRAIN,407,0,0 +TRAIN,761,0,0 +TRAIN,606,0,0 +TRAIN,121,0,0 +TRAIN,628,0,0 +TRAIN,177,0,0 +TRAIN,465,0,0 +TRAIN,272,0,0 +TRAIN,172,0,0 +TRAIN,754,0,0 +TRAIN,410,0,0 +TRAIN,394,0,0 +TRAIN,133,0,0 +TRAIN,118,0,0 +TRAIN,474,0,0 +TRAIN,520,0,0 +TRAIN,405,0,0 +TRAIN,591,0,0 +TRAIN,452,0,0 +TRAIN,5,0,0 +TRAIN,742,0,0 +TRAIN,654,0,0 +TRAIN,646,0,0 +TRAIN,594,0,0 +TRAIN,641,0,0 +TRAIN,105,0,0 +TRAIN,138,0,0 +TRAIN,246,0,0 +TRAIN,125,0,0 +TRAIN,162,0,0 +TRAIN,299,0,0 +TRAIN,493,0,0 +TRAIN,85,0,0 +TRAIN,694,0,0 +TRAIN,418,0,0 +TRAIN,354,0,0 +TRAIN,745,0,0 +TRAIN,383,0,0 +TRAIN,263,0,0 +TRAIN,443,0,0 +TRAIN,234,0,0 +TRAIN,24,0,0 +TRAIN,673,0,0 +TRAIN,767,0,0 +TRAIN,747,0,0 +TRAIN,225,0,0 +TRAIN,749,0,0 +TRAIN,726,0,0 +TRAIN,37,0,0 +TRAIN,50,0,0 +TRAIN,364,0,0 +TRAIN,240,0,0 +TRAIN,381,0,0 +TRAIN,487,0,0 +TRAIN,683,0,0 +TRAIN,144,0,0 +TRAIN,566,0,0 +TRAIN,56,0,0 +TRAIN,521,0,0 +TRAIN,401,0,0 +TRAIN,165,0,0 +TRAIN,202,0,0 +TRAIN,253,0,0 +TRAIN,211,0,0 +TRAIN,315,0,0 +TRAIN,25,0,0 +TRAIN,351,0,0 +TRAIN,510,0,0 +TRAIN,304,0,0 +TRAIN,68,0,0 +TRAIN,238,0,0 +TRAIN,41,0,0 +TRAIN,704,0,0 +TRAIN,237,0,0 +TRAIN,116,0,0 +TRAIN,183,0,0 +TRAIN,374,0,0 +TRAIN,390,0,0 +TRAIN,174,0,0 +TRAIN,475,0,0 +TRAIN,668,0,0 +TRAIN,570,0,0 +TRAIN,573,0,0 +TRAIN,220,0,0 +TRAIN,740,0,0 +TRAIN,30,0,0 +TRAIN,587,0,0 +TRAIN,153,0,0 +TRAIN,575,0,0 +TRAIN,190,0,0 +TRAIN,536,0,0 +TRAIN,235,0,0 +TRAIN,599,0,0 +TRAIN,26,0,0 +TRAIN,247,0,0 +TRAIN,193,0,0 +TRAIN,598,0,0 +TRAIN,527,0,0 +TRAIN,748,0,0 +TRAIN,241,0,0 +TRAIN,640,0,0 +TRAIN,274,0,0 +TRAIN,163,0,0 +TRAIN,45,0,0 +TRAIN,112,0,0 +TRAIN,65,0,0 +TRAIN,300,0,0 +TRAIN,453,0,0 +TRAIN,327,0,0 +TRAIN,368,0,0 +TRAIN,219,0,0 +TRAIN,718,0,0 +TRAIN,738,0,0 +TRAIN,436,0,0 +TRAIN,286,0,0 +TRAIN,322,0,0 +TRAIN,70,0,0 +TRAIN,62,0,0 +TRAIN,633,0,0 +TRAIN,744,0,0 +TRAIN,440,0,0 +TRAIN,490,0,0 +TRAIN,463,0,0 +TRAIN,98,0,0 +TRAIN,222,0,0 +TRAIN,385,0,0 +TRAIN,556,0,0 +TRAIN,764,0,0 +TRAIN,128,0,0 +TRAIN,522,0,0 +TRAIN,389,0,0 +TRAIN,648,0,0 +TRAIN,84,0,0 +TRAIN,509,0,0 +TRAIN,454,0,0 +TRAIN,687,0,0 +TRAIN,388,0,0 +TRAIN,347,0,0 +TRAIN,547,0,0 +TRAIN,706,0,0 +TRAIN,78,0,0 +TRAIN,255,0,0 +TRAIN,661,0,0 +TRAIN,69,0,0 +TRAIN,306,0,0 +TRAIN,284,0,0 +TRAIN,264,0,0 +TRAIN,188,0,0 +TRAIN,149,0,0 +TRAIN,717,0,0 +TRAIN,109,0,0 +TRAIN,221,0,0 +TRAIN,214,0,0 +TRAIN,635,0,0 +TRAIN,750,0,0 +TRAIN,117,0,0 +TRAIN,189,0,0 +TRAIN,555,0,0 +TRAIN,692,0,0 +TRAIN,627,0,0 +TRAIN,196,0,0 +TRAIN,145,0,0 +TRAIN,558,0,0 +TRAIN,621,0,0 +TRAIN,195,0,0 +TRAIN,342,0,0 +TRAIN,356,0,0 +TRAIN,377,0,0 +TRAIN,236,0,0 +TRAIN,338,0,0 +TRAIN,66,0,0 +TRAIN,458,0,0 +TRAIN,746,0,0 +TRAIN,403,0,0 +TRAIN,200,0,0 +TRAIN,480,0,0 +TRAIN,213,0,0 +TRAIN,77,0,0 +TRAIN,432,0,0 +TRAIN,239,0,0 +TRAIN,269,0,0 +TRAIN,423,0,0 +TRAIN,260,0,0 +TRAIN,560,0,0 +TRAIN,422,0,0 +TRAIN,39,0,0 +TRAIN,471,0,0 +TRAIN,328,0,0 +TRAIN,450,0,0 +TRAIN,393,0,0 +TRAIN,312,0,0 +TRAIN,739,0,0 +TRAIN,301,0,0 +TRAIN,608,0,0 +TRAIN,765,0,0 +TRAIN,502,0,0 +TRAIN,330,0,0 +TRAIN,734,0,0 +TRAIN,277,0,0 +TRAIN,616,0,0 +TRAIN,285,0,0 +TRAIN,148,0,0 +TRAIN,572,0,0 +TRAIN,757,0,0 +TRAIN,402,0,0 +TRAIN,464,0,0 +TRAIN,287,0,0 +TRAIN,357,0,0 +TRAIN,561,0,0 +TRAIN,605,0,0 +TRAIN,589,0,0 +TRAIN,352,0,0 +TRAIN,544,0,0 +TRAIN,293,0,0 +TRAIN,609,0,0 +TRAIN,308,0,0 +TRAIN,447,0,0 +TRAIN,478,0,0 +TRAIN,531,0,0 +TRAIN,659,0,0 +TRAIN,119,0,0 +TRAIN,491,0,0 +TRAIN,373,0,0 +TRAIN,228,0,0 +TRAIN,626,0,0 +TRAIN,303,0,0 +TRAIN,577,0,0 +TRAIN,245,0,0 +TRAIN,89,0,0 +TRAIN,273,0,0 +TRAIN,176,0,0 +TRAIN,519,0,0 +TRAIN,498,0,0 +TRAIN,467,0,0 +TRAIN,0,0,0 +TRAIN,759,0,0 +TRAIN,2,0,0 +TRAIN,525,0,0 +TRAIN,512,0,0 +TRAIN,48,0,0 \ No newline at end of file diff --git a/openml/tests.test_runs.test_run.TestRun.test_offline_and_online_run_identical/org/openml/test/tasks/119/datasplits.pkl.py3 b/openml/tests.test_runs.test_run.TestRun.test_offline_and_online_run_identical/org/openml/test/tasks/119/datasplits.pkl.py3 new file mode 100644 index 0000000000000000000000000000000000000000..1090d01a311455e9f4f5b7c50ab212f7e8f3f7f6 GIT binary patch literal 3855 zcmXYzg;$hY6vc-y80^CCz`}fXx1y+6mArL4oCW4;D%Iy>3}?{I$7W_pHvuf}CimXolCL+UuF=^{VlD zXL@~7)8jTJ#8-KJ|DQ20T2{iqep&Gh2+j8TU#zY124s3Esp$!^$rgD7GcqzZ{KLN( zrTe1Zpxlf3-LiTm`FsI}xl7Oxh8ObT){3xur~`;ozZOI8Oo0C+T|YKqGma!*u8%0v3BQP~rk76Eq|8U-x&P|ehe!Fn}bL>vQWfIWd+ ztwwxPtsJ!%;jZB4%Xz2lo4T5)r6A&CL!e>})00~znZ1{P8_Huy1k6zBx2S^bFqK`J ztN|xMy&Ysz5oa+*q2q`JD>lE!f-W(8>(|~YSpx$6Vupdx&a1yv`Xt0KBCFxKZPqJ81GikRt z&3-~HT8pMnKB3w@4Znukr=~BmUSnlY&jH6Vwh;O68>)`S&*h`3TcHFB?uUTW+u(M8h1h{>{_Lz!R?#ww*fY#jun|~0 zUHv3(BbI`#B<>C(TW&3)NRDQ-KhOlG$WihXu}SltSEKf~dx}2-u?4IJ`^ZnKpcQO- z;EiAy&H@IGCN2RMThR~I(vCeA>?Cno<2_W@YI4t|bO6~$l+(_(pPEJ1Erk1ye*l!> zM2Yr6dP!7;cTB#luBzQYY(}^Xh)yc$bymLD3in6!TJ#vtwMl8ajU$^03N++B z;*7*|$kc6DvF0G=5tC%-nN44Yi~WJWq_kWX;twKbYrIaP>0p(rZ=s12<&1Z2s3@?n z&@p(R|TyFB}!sDPhX7F(Puh9hJzJg4Fi^dGF4xws;k7k5?z6E zskzvSt00@AuAk~E$M;L?LhQXUGr z0@KlIH`G&4xlrPP=q7YZbG(I0Nlf3=WD@%XMO2C%0N1e7$O`3DlI&#KJWvLl7Ir3L z1<`3)I~|aAT}u1cHB0I9HvxOEOxIXNXqt*R zNOZdP-50VAD(SxNkH{wuBU%&lEK;}CtOuM9u+;;WqRp_7lip76lcM+IQ@CN7e zb8ASZH#F)E%gs;9kNr>^p3kqZ5t-gdeto6?UFD6+Ptgykl0+_8%~ZpbLBxD;6x~av zUTsg{^v4ebS-3r9G$Jf^&}+BkW32?e_!B(xgWxEzXQBsG{-WY^Lv15j3}(xyggS#b zkWDc{!B2EL#htDJr^C^7&$%C{BE(GDkLf&1VtS+Tz&gluD>?oCaoVVTl~o~z`?b3(FHYpm!}Ibs7%MT`vGmi848?s=vMXU!q|t{2u`S?;ijXx z9~eM#fS4;&M?xZE7;V#t$>gq_Bp{&|aGJzw5mt{{2Bv|2z;ySoR-YbmBw`scO|8w8 zoz5}4tW?Y2=|Nltlnh4W^i|VS!~~3mU@WjI$TdmnQs|_SFQ9ES&(ehTa;{R^jj$_- zEIB&O0-8`SZ4zPy(X@#RG^(9!1Y(eS^@AZrt`^D>a0)j>To2rP$YNVp*IP1hItH8; zr_;S_ZFEcohe(R4uSSn2jsY9MDs^5(gw(Br!s&b&r-|=Eu0?(u4NmJUMVX#xm1@n{ z=OkLO$C6mRvJSGavh&apumdB5%5vgK;52gr;w;g$>MgeX^zuwU5Zq05)iHD(n1^$i z=(O?NhgcId1iL?2gWf|Woj6y;*P>=<3a(X(zG>2OtUan#%hFYHSefpdbez2y_5oUk z;m+eYeZkhCR0riQb-&bDolx$(RI8LOT5q%ts4 + 119 + Task 119: diabetes (Supervised Classification) + 1 + Supervised Classification + + +20 +class + + + +5 +holdout +https://test.openml.org/api_splits/get/119/Task_119_splits.arff +1 + +33 +true + + + + + + + + + +ARFF + + + + + + + diff --git a/openml/tests.test_runs.test_run.TestRun.test_offline_and_online_run_identical/org/openml/test/tasks/733/task.xml b/openml/tests.test_runs.test_run.TestRun.test_offline_and_online_run_identical/org/openml/test/tasks/733/task.xml new file mode 100644 index 000000000..fd50a7108 --- /dev/null +++ b/openml/tests.test_runs.test_run.TestRun.test_offline_and_online_run_identical/org/openml/test/tasks/733/task.xml @@ -0,0 +1,32 @@ + + 733 + Task 733: quake (Supervised Regression) + 2 + Supervised Regression + + +123 +richter + + + +7 +crossvalidation +https://test.openml.org//api_splits/get/733/Task_733_splits.arff +1 +10 + + + + + + + + +ARFF + + + + + + diff --git a/openml/tests.test_runs.test_run.TestRun.test_offline_and_online_run_identical/runs/162880322156049587682907720944831787496/description.xml b/openml/tests.test_runs.test_run.TestRun.test_offline_and_online_run_identical/runs/162880322156049587682907720944831787496/description.xml new file mode 100644 index 000000000..0113fa017 --- /dev/null +++ b/openml/tests.test_runs.test_run.TestRun.test_offline_and_online_run_identical/runs/162880322156049587682907720944831787496/description.xml @@ -0,0 +1,34 @@ + + 119 + + Python_3.10.11. Sklearn_1.7.2. NumPy_2.2.6. SciPy_1.15.3. + + openml-python + Sklearn_1.7.2. + + + usercpu_time_millis_training + 0.0 + + + wall_clock_time_millis_training + 4.98652458190918 + + + usercpu_time_millis_testing + 0.0 + + + usercpu_time_millis + 0.0 + + + wall_clock_time_millis_testing + 2.9909610748291016 + + + wall_clock_time_millis + 7.977485656738281 + + + \ No newline at end of file diff --git a/openml/tests.test_runs.test_run.TestRun.test_offline_and_online_run_identical/runs/162880322156049587682907720944831787496/flow.xml b/openml/tests.test_runs.test_run.TestRun.test_offline_and_online_run_identical/runs/162880322156049587682907720944831787496/flow.xml new file mode 100644 index 000000000..b9369596a --- /dev/null +++ b/openml/tests.test_runs.test_run.TestRun.test_offline_and_online_run_identical/runs/162880322156049587682907720944831787496/flow.xml @@ -0,0 +1,511 @@ + + TESTa8a9af7f85sklearn.pipeline.Pipeline(cat_handling=sklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.preprocessing._encoders.OneHotEncoder),imp=sklearn.impute._base.SimpleImputer,classifier=sklearn.dummy.DummyClassifier) + sklearn.Pipeline(ColumnTransformer,SimpleImputer,DummyClassifier) + sklearn.pipeline.Pipeline + openml==0.16.0,sklearn==1.7.2 + A sequence of data transformers with an optional final predictor. + +`Pipeline` allows you to sequentially apply a list of transformers to +preprocess the data and, if desired, conclude the sequence with a final +:term:`predictor` for predictive modeling. + +Intermediate steps of the pipeline must be transformers, that is, they +must implement `fit` and `transform` methods. +The final :term:`estimator` only needs to implement `fit`. +The transformers in the pipeline can be cached using ``memory`` argument. + +The purpose of the pipeline is to assemble several steps that can be +cross-validated together while setting different parameters. For this, it +enables setting parameters of the various steps using their names and the +parameter name separated by a `'__'`, as in the example below. A step's +estimator may be replaced entirely by setting the parameter with its name +to another estimator, or a transformer removed by setting it to +`'passthrough'` or `None`. + +For an example use case of `Pipeline` combined with +:class:`~s... + English + sklearn==1.7.2 +numpy>=1.22.0 +scipy>=1.8.0 +joblib>=1.2.0 +threadpoolctl>=3.1.0 + + memory + str or object with the joblib + null + Used to cache the fitted transformers of the pipeline. The last step + will never be cached, even if it is a transformer. By default, no + caching is performed. If a string is given, it is the path to the + caching directory. Enabling caching triggers a clone of the transformers + before fitting. Therefore, the transformer instance given to the + pipeline cannot be inspected directly. Use the attribute ``named_steps`` + or ``steps`` to inspect estimators within the pipeline. Caching the + transformers is advantageous when fitting is time consuming. See + :ref:`sphx_glr_auto_examples_neighbors_plot_caching_nearest_neighbors.py` + for an example on how to enable caching + + + steps + list of tuples + [{"oml-python:serialized_object": "component_reference", "value": {"key": "cat_handling", "step_name": "cat_handling"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "imp", "step_name": "imp"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "classifier", "step_name": "classifier"}}] + List of (name of step, estimator) tuples that are to be chained in + sequential order. To be compatible with the scikit-learn API, all steps + must define `fit`. All non-last steps must also define `transform`. See + :ref:`Combining Estimators <combining_estimators>` for more details + + + transform_input + list of str + null + The names of the :term:`metadata` parameters that should be transformed by the + pipeline before passing it to the step consuming it + + This enables transforming some input arguments to ``fit`` (other than ``X``) + to be transformed by the steps of the pipeline up to the step which requires + them. Requirement is defined via :ref:`metadata routing <metadata_routing>` + For instance, this can be used to pass a validation set through the pipeline + + You can only set this if metadata routing is enabled, which you + can enable using ``sklearn.set_config(enable_metadata_routing=True)`` + + .. versionadded:: 1.6 + + + verbose + bool + false + If True, the time elapsed while fitting each step will be printed as it + is completed. + + + cat_handling + + TESTa8a9af7f85sklearn.compose._column_transformer.ColumnTransformer(cat=sklearn.preprocessing._encoders.OneHotEncoder) + sklearn.ColumnTransformer + sklearn.compose._column_transformer.ColumnTransformer + openml==0.16.0,sklearn==1.7.2 + Applies transformers to columns of an array or pandas DataFrame. + +This estimator allows different columns or column subsets of the input +to be transformed separately and the features generated by each transformer +will be concatenated to form a single feature space. +This is useful for heterogeneous or columnar data, to combine several +feature extraction mechanisms or transformations into a single transformer. + English + sklearn==1.7.2 +numpy>=1.22.0 +scipy>=1.8.0 +joblib>=1.2.0 +threadpoolctl>=3.1.0 + + force_int_remainder_cols + bool + "deprecated" + This parameter has no effect + + .. note:: + If you do not access the list of columns for the remainder columns + in the `transformers_` fitted attribute, you do not need to set + this parameter + + .. versionadded:: 1.5 + + .. versionchanged:: 1.7 + The default value for `force_int_remainder_cols` will change from + `True` to `False` in version 1.7 + + .. deprecated:: 1.7 + `force_int_remainder_cols` is deprecated and will be removed in 1.9. + + + n_jobs + int + null + Number of jobs to run in parallel + ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context + ``-1`` means using all processors. See :term:`Glossary <n_jobs>` + for more details + + + remainder + "passthrough" + + + sparse_threshold + float + 0.3 + If the output of the different transformers contains sparse matrices, + these will be stacked as a sparse matrix if the overall density is + lower than this value. Use ``sparse_threshold=0`` to always return + dense. When the transformed output consists of all dense data, the + stacked result will be dense, and this keyword will be ignored + + + transformer_weights + dict + null + Multiplicative weights for features per transformer. The output of the + transformer is multiplied by these weights. Keys are transformer names, + values the weights + + + transformers + list of tuples + [{"oml-python:serialized_object": "component_reference", "value": {"key": "cat", "step_name": "cat", "argument_1": {"oml-python:serialized_object": "function", "value": "tests.test_runs.test_run._cat_col_selector"}}}] + List of (name, transformer, columns) tuples specifying the + transformer objects to be applied to subsets of the data + + + verbose + bool + false + If True, the time elapsed while fitting each transformer will be + printed as it is completed + + + verbose_feature_names_out + bool + true + - If True, :meth:`ColumnTransformer.get_feature_names_out` will prefix + all feature names with the name of the transformer that generated that + feature. It is equivalent to setting + `verbose_feature_names_out="{transformer_name}__{feature_name}"` + - If False, :meth:`ColumnTransformer.get_feature_names_out` will not + prefix any feature names and will error if feature names are not + unique + - If ``Callable[[str, str], str]``, + :meth:`ColumnTransformer.get_feature_names_out` will rename all the features + using the name of the transformer. The first argument of the callable is the + transformer name and the second argument is the feature name. The returned + string will be the new feature name + - If ``str``, it must be a string ready for formatting. The given string will + be formatted using two field names: ``transformer_name`` and ``feature_name`` + e.g. ``"{feature_name}__{transformer_name}"``. See :meth:`str.format` method + from the standard ... + + + cat + + TESTa8a9af7f85sklearn.preprocessing._encoders.OneHotEncoder + sklearn.OneHotEncoder + sklearn.preprocessing._encoders.OneHotEncoder + openml==0.16.0,sklearn==1.7.2 + Encode categorical features as a one-hot numeric array. + +The input to this transformer should be an array-like of integers or +strings, denoting the values taken on by categorical (discrete) features. +The features are encoded using a one-hot (aka 'one-of-K' or 'dummy') +encoding scheme. This creates a binary column for each category and +returns a sparse matrix or dense array (depending on the ``sparse_output`` +parameter). + +By default, the encoder derives the categories based on the unique values +in each feature. Alternatively, you can also specify the `categories` +manually. + +This encoding is needed for feeding categorical data to many scikit-learn +estimators, notably linear models and SVMs with the standard kernels. + +Note: a one-hot encoding of y labels should use a LabelBinarizer +instead. + English + sklearn==1.7.2 +numpy>=1.22.0 +scipy>=1.8.0 +joblib>=1.2.0 +threadpoolctl>=3.1.0 + + categories + 'auto' or a list of array + "auto" + Categories (unique values) per feature: + + - 'auto' : Determine categories automatically from the training data + - list : ``categories[i]`` holds the categories expected in the ith + column. The passed categories should not mix strings and numeric + values within a single feature, and should be sorted in case of + numeric values + + The used categories can be found in the ``categories_`` attribute + + .. versionadded:: 0.20 + +drop : {'first', 'if_binary'} or an array-like of shape (n_features,), default=None + Specifies a methodology to use to drop one of the categories per + feature. This is useful in situations where perfectly collinear + features cause problems, such as when feeding the resulting data + into an unregularized linear regression model + + However, dropping one category breaks the symmetry of the original + representation and can therefore induce a bias in downstream models, + for instance for penalized linear classification or regression models + + + drop + null + + + dtype + number type + {"oml-python:serialized_object": "type", "value": "np.float64"} + Desired dtype of output + +handle_unknown : {'error', 'ignore', 'infrequent_if_exist', 'warn'}, default='error' + Specifies the way unknown categories are handled during :meth:`transform` + + - 'error' : Raise an error if an unknown category is present during transform + - 'ignore' : When an unknown category is encountered during + transform, the resulting one-hot encoded columns for this feature + will be all zeros. In the inverse transform, an unknown category + will be denoted as None + - 'infrequent_if_exist' : When an unknown category is encountered + during transform, the resulting one-hot encoded columns for this + feature will map to the infrequent category if it exists. The + infrequent category will be mapped to the last position in the + encoding. During inverse transform, an unknown category will be + mapped to the category denoted `'infrequent'` if it exists. If the + `'infrequent'` category does not exist, then :meth:`transform` an... + + + feature_name_combiner + "concat" + + + handle_unknown + "ignore" + + + max_categories + int + null + Specifies an upper limit to the number of output features for each input + feature when considering infrequent categories. If there are infrequent + categories, `max_categories` includes the category representing the + infrequent categories along with the frequent categories. If `None`, + there is no limit to the number of output features + + .. versionadded:: 1.1 + Read more in the :ref:`User Guide <encoder_infrequent_categories>` + +feature_name_combiner : "concat" or callable, default="concat" + Callable with signature `def callable(input_feature, category)` that returns a + string. This is used to create feature names to be returned by + :meth:`get_feature_names_out` + + `"concat"` concatenates encoded feature name and category with + `feature + "_" + str(category)`.E.g. feature X with values 1, 6, 7 create + feature names `X_1, X_6, X_7` + + .. versionadded:: 1.3 + + + min_frequency + int or float + null + Specifies the minimum frequency below which a category will be + considered infrequent + + - If `int`, categories with a smaller cardinality will be considered + infrequent + + - If `float`, categories with a smaller cardinality than + `min_frequency * n_samples` will be considered infrequent + + .. versionadded:: 1.1 + Read more in the :ref:`User Guide <encoder_infrequent_categories>` + + + sparse_output + bool + true + When ``True``, it returns a :class:`scipy.sparse.csr_matrix`, + i.e. a sparse matrix in "Compressed Sparse Row" (CSR) format + + .. versionadded:: 1.2 + `sparse` was renamed to `sparse_output` + + openml-python + sklearn + scikit-learn + python + sklearn_1.7.2 + + + openml-python + sklearn + scikit-learn + python + sklearn_1.7.2 + + + + imp + + TESTa8a9af7f85sklearn.impute._base.SimpleImputer + sklearn.SimpleImputer + sklearn.impute._base.SimpleImputer + openml==0.16.0,sklearn==1.7.2 + Univariate imputer for completing missing values with simple strategies. + +Replace missing values using a descriptive statistic (e.g. mean, median, or +most frequent) along each column, or using a constant value. + English + sklearn==1.7.2 +numpy>=1.22.0 +scipy>=1.8.0 +joblib>=1.2.0 +threadpoolctl>=3.1.0 + + add_indicator + bool + false + If True, a :class:`MissingIndicator` transform will stack onto output + of the imputer's transform. This allows a predictive estimator + to account for missingness despite imputation. If a feature has no + missing values at fit/train time, the feature won't appear on + the missing indicator even if there are missing values at + transform/test time + + + copy + bool + true + If True, a copy of X will be created. If False, imputation will + be done in-place whenever possible. Note that, in the following cases, + a new copy will always be made, even if `copy=False`: + + - If `X` is not an array of floating values; + - If `X` is encoded as a CSR matrix; + - If `add_indicator=True` + + + fill_value + str or numerical value + null + When strategy == "constant", `fill_value` is used to replace all + occurrences of missing_values. For string or object data types, + `fill_value` must be a string + If `None`, `fill_value` will be 0 when imputing numerical + data and "missing_value" for strings or object data types + + + keep_empty_features + bool + false + If True, features that consist exclusively of missing values when + `fit` is called are returned in results when `transform` is called + The imputed value is always `0` except when `strategy="constant"` + in which case `fill_value` will be used instead + + .. versionadded:: 1.2 + + .. versionchanged:: 1.6 + Currently, when `keep_empty_feature=False` and `strategy="constant"`, + empty features are not dropped. This behaviour will change in version + 1.8. Set `keep_empty_feature=True` to preserve this behaviour. + + + missing_values + int + NaN + The placeholder for the missing values. All occurrences of + `missing_values` will be imputed. For pandas' dataframes with + nullable integer dtypes with missing values, `missing_values` + can be set to either `np.nan` or `pd.NA` + + + strategy + str or Callable + "mean" + The imputation strategy + + - If "mean", then replace missing values using the mean along + each column. Can only be used with numeric data + - If "median", then replace missing values using the median along + each column. Can only be used with numeric data + - If "most_frequent", then replace missing using the most frequent + value along each column. Can be used with strings or numeric data + If there is more than one such value, only the smallest is returned + - If "constant", then replace missing values with fill_value. Can be + used with strings or numeric data + - If an instance of Callable, then replace missing values using the + scalar statistic returned by running the callable over a dense 1d + array containing non-missing values of each column + + .. versionadded:: 0.20 + strategy="constant" for fixed value imputation + + .. versionadded:: 1.5 + strategy=callable for custom value imputation + + openml-python + sklearn + scikit-learn + python + sklearn_1.7.2 + + + + classifier + + TESTa8a9af7f85sklearn.dummy.DummyClassifier + sklearn.DummyClassifier + sklearn.dummy.DummyClassifier + openml==0.16.0,sklearn==1.7.2 + DummyClassifier makes predictions that ignore the input features. + +This classifier serves as a simple baseline to compare against other more +complex classifiers. + +The specific behavior of the baseline is selected with the `strategy` +parameter. + +All strategies make predictions that ignore the input feature values passed +as the `X` argument to `fit` and `predict`. The predictions, however, +typically depend on values observed in the `y` parameter passed to `fit`. + +Note that the "stratified" and "uniform" strategies lead to +non-deterministic predictions that can be rendered deterministic by setting +the `random_state` parameter if needed. The other strategies are naturally +deterministic and, once fit, always return the same constant prediction +for any value of `X`. + English + sklearn==1.7.2 +numpy>=1.22.0 +scipy>=1.8.0 +joblib>=1.2.0 +threadpoolctl>=3.1.0 + + constant + int or str or array + null + The explicit constant as predicted by the "constant" strategy. This + parameter is useful only for the "constant" strategy. + + + random_state + int + null + Controls the randomness to generate the predictions when + ``strategy='stratified'`` or ``strategy='uniform'`` + Pass an int for reproducible output across multiple function calls + See :term:`Glossary <random_state>` + + + strategy + "prior" + + openml-python + sklearn + scikit-learn + python + sklearn_1.7.2 + + + openml-python + sklearn + scikit-learn + python + sklearn_1.7.2 + \ No newline at end of file diff --git a/openml/tests.test_runs.test_run.TestRun.test_offline_and_online_run_identical/runs/162880322156049587682907720944831787496/model.pkl b/openml/tests.test_runs.test_run.TestRun.test_offline_and_online_run_identical/runs/162880322156049587682907720944831787496/model.pkl new file mode 100644 index 0000000000000000000000000000000000000000..9d86f24ed5853a582e86499be010436eb8b109b3 GIT binary patch literal 963 zcmYjPyKWOf6a~e0jER$=fRt1ep@3#3Ac6*oBA`HlK@dtb8t-0vhwMC}Ns zG5ibv!Ou`~cI|b%#qP}2-FwgLTj%$mwJXgNx7|ra+^Wn7LzPgJV*gEh{FUx~PhZmA z*ma(aOCNCD$hl`FR|T4g{~uG~ahNjAkBhfVQ#rM8^CvC>(u zh-=u8;_Y^@v1F{y$vG^{7^z$rWL=8G*NR?f|9oCZ%Yg&@Pg89Lp{c`z*XVVITSrU> zZ-P(fv0M0=0okq!(#%p^pH!OrM+X=aHye7yf;v(9Or_WpQ>87sJB8IIjp9%W#U_?M z1;Cl1uqpXxwz78=Z%v5%V2LR%38Kg`#Dx^ST&srQHd`=cr=TM=_H^%OkFy6UjN`5+ z=UrC6nGNdll;Ykoif@C0(r^N5Ge;HWURz-QnRvWrNphheQi|6Ncg~kqhiRE$_FM%N z$d$S(($Uku51S|U6#J;h4qSFt3}I&^rlqgT>wr0i!|5XKEskuJqpQV*vb!)nCngk- zw?Jx`Fk?`_N~&clQn_E=3F9BITS$}Q&DL(*f=7(T9IN8+9qtvqY>G9(MIbk&X!5{L zc@^OE(bs>AKo5CQV0j_129jLFof9I%NE$zD@j8_I4m6Pyc;Au4q5fbZs%kzEbUV35 zF3y)Q2YCf4#YEJy4qLQEkP;KNp4H#O%Z?Uk`6PCY6#x=95dK0-<~-J>SMRUJKB9n| d@@dqrp}4hFA1vyuj$%)e)D|%-vx|9S_8(Qjg9HEo literal 0 HcmV?d00001 diff --git a/openml/tests.test_runs.test_run.TestRun.test_offline_and_online_run_identical/runs/162880322156049587682907720944831787496/predictions.arff b/openml/tests.test_runs.test_run.TestRun.test_offline_and_online_run_identical/runs/162880322156049587682907720944831787496/predictions.arff new file mode 100644 index 000000000..259a8376d --- /dev/null +++ b/openml/tests.test_runs.test_run.TestRun.test_offline_and_online_run_identical/runs/162880322156049587682907720944831787496/predictions.arff @@ -0,0 +1,271 @@ +% Python_3.10.11. +% Sklearn_1.7.2. +% NumPy_2.2.6. +% SciPy_1.15.3. +% Sat Nov 15 15:47:38 2025 +% Created by run_flow_on_task +@RELATION openml_task_119_predictions + +@ATTRIBUTE repeat NUMERIC +@ATTRIBUTE fold NUMERIC +@ATTRIBUTE sample NUMERIC +@ATTRIBUTE row_id NUMERIC +@ATTRIBUTE prediction {tested_negative, tested_positive} +@ATTRIBUTE correct {tested_negative, tested_positive} +@ATTRIBUTE confidence.tested_negative NUMERIC +@ATTRIBUTE confidence.tested_positive NUMERIC + +@DATA +0,0,0,53,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,455,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,101,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,57,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,363,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,16,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,496,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,271,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,511,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,280,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,88,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,270,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,210,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,665,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,156,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,360,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,323,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,528,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,113,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,96,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,107,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,166,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,413,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,565,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,251,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,339,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,317,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,564,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,707,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,518,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,513,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,95,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,371,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,10,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,242,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,727,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,755,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,143,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,763,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,110,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,562,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,481,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,126,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,414,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,258,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,186,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,256,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,713,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,254,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,275,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,197,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,542,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,4,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,428,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,387,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,244,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,265,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,722,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,58,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,79,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,161,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,619,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,349,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,702,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,756,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,216,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,396,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,180,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,489,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,669,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,567,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,283,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,624,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,647,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,310,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,127,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,142,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,680,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,499,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,545,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,8,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,404,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,698,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,671,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,644,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,505,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,135,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,613,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,469,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,507,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,80,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,28,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,751,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,337,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,679,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,348,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,332,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,120,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,708,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,429,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,276,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,534,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,350,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,610,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,399,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,516,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,29,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,559,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,267,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,192,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,355,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,451,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,124,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,392,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,141,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,64,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,47,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,20,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,657,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,325,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,733,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,288,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,576,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,302,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,160,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,227,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,395,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,400,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,735,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,705,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,523,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,290,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,19,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,485,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,551,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,571,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,548,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,645,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,724,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,703,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,261,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,488,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,83,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,51,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,397,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,720,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,345,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,655,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,344,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,449,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,99,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,762,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,42,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,578,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,386,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,108,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,690,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,31,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,281,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,201,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,23,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,699,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,618,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,379,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,617,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,585,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,752,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,693,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,182,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,11,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,457,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,477,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,508,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,685,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,553,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,358,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,111,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,581,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,38,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,35,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,74,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,324,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,208,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,361,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,438,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,486,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,549,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,666,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,482,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,173,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,492,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,279,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,656,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,580,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,224,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,639,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,484,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,36,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,653,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,506,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,114,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,130,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,106,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,341,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,590,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,321,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,378,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,730,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,259,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,638,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,417,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,425,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,424,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,697,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,470,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,204,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,72,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,568,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,103,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,230,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,497,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,441,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,539,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,533,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,326,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,90,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,331,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,311,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,427,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,416,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,44,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,131,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,696,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,448,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,346,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,134,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,700,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,359,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,426,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,75,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,603,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,689,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,320,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,194,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,709,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,398,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,212,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,343,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,169,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,695,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,249,tested_negative,tested_negative,0.658252427184466,0.341747572815534 +0,0,0,676,tested_negative,tested_positive,0.658252427184466,0.341747572815534 +0,0,0,732,tested_negative,tested_positive,0.658252427184466,0.341747572815534 diff --git a/tests/files/misc/features_with_whitespaces.xml.pkl b/tests/files/misc/features_with_whitespaces.xml.pkl new file mode 100644 index 0000000000000000000000000000000000000000..f6a775cc7e9ab9d0db09aa559f3c6b4495859abf GIT binary patch literal 253 zcmZo*nfi$V0&1sdcr*0Ku(6B$gx=rlX;DVmK_fSP+)GxJhXE2aPqVaZF(1uA9=Gn~@H2{I|Zq_O}gz@Ar{n_85aJf(*( zFF!XkFEJ;+EHS4vwRnnOk0?+sDYYm*H?z1nGcO$`0W^&(Kd&S|CqF$Cq^>l{n=ykK zVq*pykj>u19A;uPC4&=aI>gK=8Qifz=Wr_MDwrAof!>rJ4hTzIZ%S$gk2gaGFVLJ) FJpk*eSy=!8 literal 0 HcmV?d00001 diff --git a/tests/test_datasets/test_dataset.py b/tests/test_datasets/test_dataset.py index 86a4d3f57..b1a24b540 100644 --- a/tests/test_datasets/test_dataset.py +++ b/tests/test_datasets/test_dataset.py @@ -230,6 +230,16 @@ def test_get_data_corrupt_pickle(self): assert isinstance(xy, pd.DataFrame) assert xy.shape == (150, 5) + def test_get_missing_summary(self): + dataset = openml.datasets.get_dataset(31) # credit-g + summary = dataset.get_missing_summary() + + assert "n_missing_total" in summary + assert "missing_per_column" in summary + assert isinstance(summary["missing_per_column"], dict) + assert isinstance(summary["n_missing_total"], (int, np.integer)) + assert summary["n_missing_total"] >= 0 + def test_lazy_loading_metadata(self): # Initial Setup did_cache_dir = openml.utils._create_cache_directory_for_id(