@@ -29,7 +29,7 @@ randomly sampling with replacement the current available samples. The
2929 >>> ros = RandomOverSampler(random_state=0)
3030 >>> X_resampled, y_resampled = ros.fit_sample(X, y)
3131 >>> from collections import Counter
32- >>> print(Counter(y_resampled))
32+ >>> print(Counter(y_resampled)) # doctest: +SKIP
3333 Counter({2: 4674, 1: 4674, 0: 4674})
3434
3535The augmented data set should be used instead of the original data set to train
@@ -67,7 +67,7 @@ can be used in the same manner::
6767
6868 >>> from imblearn.over_sampling import SMOTE, ADASYN
6969 >>> X_resampled, y_resampled = SMOTE().fit_sample(X, y)
70- >>> print(Counter(y_resampled))
70+ >>> print(Counter(y_resampled)) # doctest: +SKIP
7171 Counter({2: 4674, 1: 4674, 0: 4674})
7272 >>> clf_smote = LinearSVC().fit(X_resampled, y_resampled)
7373 >>> X_resampled, y_resampled = ADASYN().fit_sample(X, y)
@@ -132,7 +132,7 @@ available: (i) ``'borderline1'``, (ii) ``'borderline2'``, and (iii) ``'svm'``::
132132
133133 >>> from imblearn.over_sampling import SMOTE, ADASYN
134134 >>> X_resampled, y_resampled = SMOTE(kind='borderline1').fit_sample(X, y)
135- >>> print(Counter(y_resampled))
135+ >>> print(Counter(y_resampled)) # doctest: +SKIP
136136 Counter({2: 4674, 1: 4674, 0: 4674})
137137
138138See :ref: `sphx_glr_auto_examples_over-sampling_plot_comparison_over_sampling.py `
0 commit comments