Skip to content

NumPy Project 01 โ€” Array Basics Playground ๐Ÿ”ข Hands-on implementation of array creation, slicing, reshaping & filtering using NumPy. Demonstrates efficient vectorized operations for data manipulation and analysis. Includes clean code, visual documentation, flowchart & final results.

Notifications You must be signed in to change notification settings

Ashwin18-Offcl/Numpy_Project

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 

History

16 Commits
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

NumPy Project 01 โ€“ Array Basics Playground

๐Ÿ” Learn Arrays โ€ข Slice โ€ข Reshape โ€ข Analyze

NumPy Project Banner


๐Ÿ“‚ Table of Contents


๐Ÿ“ Project Overview

This beginner-friendly NumPy project focuses on:

โœ”๏ธ NumPy array creation
โœ”๏ธ Slicing, indexing & reshaping
โœ”๏ธ Vectorized operations for performance
โœ”๏ธ Boolean conditions for filtering

๐Ÿ“Œ A portfolio-ready project for Python, Data Analytics & Machine Learning beginners.


๐Ÿง  Skills Demonstrated

Category Skills
Python Data Handling Arrays, slicing, transformation
Data Filtering Boolean selection
Data Analysis Shape, size & output comparison
Performance Optimization Vectorization vs loops
GitHub Documentation Professional formatting

๐Ÿงฑ Technical Implementation

๐Ÿ” Workflow Diagram

flowchart TD
    A[Start] --> B[Create NumPy Array]
    B --> C[Check Shape & Size]
    C --> D[Slice Required Elements]
    D --> E[Reshape into Column Matrix]
    E --> F[Apply Vectorized Operations]
    F --> G[Filter Values using Condition]
    G --> H[Print Output & Analyze]
Loading

๐Ÿงช Core Code

import numpy as np

array_1 = np.array([10, 20, 30, 40, 50])
print("Original Array:", array_1)

print("Shape:", array_1.shape)
print("Size:", array_1.size)

print("Sliced Array:", array_1[1:4])

reshaped_array = array_1.reshape(5, 1)
print("\nReshaped Array (5x1):\n", reshaped_array)

multiplied_array = array_1 * 2
print("\nArray after Multiplying by 2:", multiplied_array)

filtered_array = array_1[array_1 > 25]
print("\nValues greater than 25:", filtered_array)

๐Ÿงพ Output Summary

Original Array: [10 20 30 40 50]
Shape: (5,)
Size: 5
Sliced Array: [20 30 40]
Reshaped Array (5x1):
 [[10]
 [20]
 [30]
 [40]
 [50]]
Array after Multiplying by 2: [20 40 60 80 100]
Values greater than 25: [30 40 50]

๐Ÿ’ก Key Business Insights Discovered

Insight Practical Value
Vectorization is faster & scalable Reduces execution time & cost
Boolean filtering extracts relevant data Useful in fraud detection & data cleansing
Reshaping supports ML-ready data Better training inputs for models
Minimal code = maintainable pipelines Efficient production analytics

๐Ÿ–ผ๏ธ Visualizations Created

Asset Purpose
README Banner Visual project identity
PDF/PPT visual documentation Strong portfolio presentation

๐Ÿ“ Folder Location:
Documentation/NumPy_Project01_Portfolio_Pack/


๐Ÿงฉ Advanced Python Techniques Demonstrated

  • Vectorized computation
  • Efficient memory usage
  • Conditional filtering
  • Data restructuring for ML
  • Clean output formatting

๐Ÿ’ผ Business Value Demonstrated

โœ” Faster computation than Excel-like operations
โœ” Reliable filtered data for business decisions
โœ” Smooth integration with ML pipelines
โœ” Supports cost-efficient analytics workflows


๐Ÿ” Key Observations:

  • Array indexing & slicing se hum specific range ke values nikal sakte hain
  • Reshaping se 1D array ko matrix form me convert karna easy hai
  • Vectorized operations har element par one-shot me apply ho jate hain
  • Boolean filter se sirf condition-match hone wale elements milte hain

๐Ÿงฉ Findings & Insights

  • โšก Vectorization > Loops for numerical operations โ€“ faster & cleaner code
  • ๐Ÿ“ Arrays ko easily reshape kiya ja sakta hai according to model/input needs
  • ๐Ÿงน Boolean filtering se data cleaning & subsetting bahut asaan ho jata hai
  • ๐Ÿ“Š Yehi concepts aage chal kar Pandas, ML models & data pipelines me use hote hain

๐Ÿ Summary / Conclusion

NumPy arrays:

  • ๐Ÿ”น Fast, flexible & memory-efficient hote hain
  • ๐Ÿ”น Real-world data processing ke liye backbone ka kaam karte hain
  • ๐Ÿ”น Is project ne aapko array creation โ†’ manipulation โ†’ analysis ka poora flow dikhaya

Yeh project Data Analytics & Machine Learning ke liye ek perfect starting point hai ๐Ÿš€


๐Ÿš€ Future Enhancements

  • ๐Ÿ“ˆ Visualize results using Matplotlib / Seaborn
  • ๐Ÿงฎ Add more complex operations (mean, std, variance, etc.)
  • ๐Ÿ“‚ Work with 2D / 3D arrays (matrices & tensors)
  • ๐Ÿง  Link this with a small ML model as next step

๐Ÿ“š Related Documentation

๐Ÿงญ Quick Access

๐Ÿ“„ Full Report PDF:
Documentation/Complete Project Overview.pdf

๐Ÿ“ฆ Portfolio Pack (PDF + PPT + Images):
Documentation/NumPy_Project01_Portfolio_Pack/


๐Ÿง‘โ€๐Ÿ’ป Author

Ashwin Panbude
๐Ÿ“ India | Data Analyst

๐Ÿ”— LinkedIn Profile:
www.linkedin.com/in/ashwin-panbude-27b824253


โญ Support This Project

If this helped you ๐Ÿ‘‡
โœจ Please Star โญ the repo โ€” it motivates more open-source contributions!

โ€œSmall consistent projects build a strong Data Analyst mindset.โ€ ๐Ÿš€

About

NumPy Project 01 โ€” Array Basics Playground ๐Ÿ”ข Hands-on implementation of array creation, slicing, reshaping & filtering using NumPy. Demonstrates efficient vectorized operations for data manipulation and analysis. Includes clean code, visual documentation, flowchart & final results.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages