Call 100+ LLMs in OpenAI format. [Bedrock, Azure, OpenAI, VertexAI, Anthropic, Groq, etc.]
LLMs - Call 100+ LLMs (Python SDK + AI Gateway)
All Supported Endpoints - /chat/completions, /responses, /embeddings, /images, /audio, /batches, /rerank, /a2a, /messages and more.
pip install litellmfrom litellm import completion
import os
os.environ["OPENAI_API_KEY"] = "your-openai-key"
os.environ["ANTHROPIC_API_KEY"] = "your-anthropic-key"
# OpenAI
response = completion(model="openai/gpt-4o", messages=[{"role": "user", "content": "Hello!"}])
# Anthropic
response = completion(model="anthropic/claude-sonnet-4-20250514", messages=[{"role": "user", "content": "Hello!"}])Getting Started - E2E Tutorial - Setup virtual keys, make your first request
pip install 'litellm[proxy]'
litellm --model gpt-4oimport openai
client = openai.OpenAI(api_key="anything", base_url="http://0.0.0.0:4000")
response = client.chat.completions.create(
model="gpt-4o",
messages=[{"role": "user", "content": "Hello!"}]
)Agents - Invoke A2A Agents (Python SDK + AI Gateway)
Supported Providers - LangGraph, Vertex AI Agent Engine, Azure AI Foundry, Bedrock AgentCore, Pydantic AI
from litellm.a2a_protocol import A2AClient
from a2a.types import SendMessageRequest, MessageSendParams
from uuid import uuid4
client = A2AClient(base_url="http://localhost:10001")
request = SendMessageRequest(
id=str(uuid4()),
params=MessageSendParams(
message={
"role": "user",
"parts": [{"kind": "text", "text": "Hello!"}],
"messageId": uuid4().hex,
}
)
)
response = await client.send_message(request)Step 1. Add your Agent to the AI Gateway
Step 2. Call Agent via A2A SDK
from a2a.client import A2ACardResolver, A2AClient
from a2a.types import MessageSendParams, SendMessageRequest
from uuid import uuid4
import httpx
base_url = "http://localhost:4000/a2a/my-agent" # LiteLLM proxy + agent name
headers = {"Authorization": "Bearer sk-1234"} # LiteLLM Virtual Key
async with httpx.AsyncClient(headers=headers) as httpx_client:
resolver = A2ACardResolver(httpx_client=httpx_client, base_url=base_url)
agent_card = await resolver.get_agent_card()
client = A2AClient(httpx_client=httpx_client, agent_card=agent_card)
request = SendMessageRequest(
id=str(uuid4()),
params=MessageSendParams(
message={
"role": "user",
"parts": [{"kind": "text", "text": "Hello!"}],
"messageId": uuid4().hex,
}
)
)
response = await client.send_message(request)MCP Tools - Connect MCP servers to any LLM (Python SDK + AI Gateway)
from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client
from litellm import experimental_mcp_client
import litellm
server_params = StdioServerParameters(command="python", args=["mcp_server.py"])
async with stdio_client(server_params) as (read, write):
async with ClientSession(read, write) as session:
await session.initialize()
# Load MCP tools in OpenAI format
tools = await experimental_mcp_client.load_mcp_tools(session=session, format="openai")
# Use with any LiteLLM model
response = await litellm.acompletion(
model="gpt-4o",
messages=[{"role": "user", "content": "What's 3 + 5?"}],
tools=tools
)Step 1. Add your MCP Server to the AI Gateway
Step 2. Call MCP tools via /chat/completions
curl -X POST 'http://0.0.0.0:4000/v1/chat/completions' \
-H 'Authorization: Bearer sk-1234' \
-H 'Content-Type: application/json' \
-d '{
"model": "gpt-4o",
"messages": [{"role": "user", "content": "Summarize the latest open PR"}],
"tools": [{
"type": "mcp",
"server_url": "litellm_proxy/mcp/github",
"server_label": "github_mcp",
"require_approval": "never"
}]
}'{
"mcpServers": {
"LiteLLM": {
"url": "http://localhost:4000/mcp",
"headers": {
"x-litellm-api-key": "Bearer sk-1234"
}
}
}
}You can use LiteLLM through either the Proxy Server or Python SDK. Both gives you a unified interface to access multiple LLMs (100+ LLMs). Choose the option that best fits your needs:
| LiteLLM AI Gateway | LiteLLM Python SDK | |
|---|---|---|
| Use Case | Central service (LLM Gateway) to access multiple LLMs | Use LiteLLM directly in your Python code |
| Who Uses It? | Gen AI Enablement / ML Platform Teams | Developers building LLM projects |
| Key Features | Centralized API gateway with authentication and authorization, multi-tenant cost tracking and spend management per project/user, per-project customization (logging, guardrails, caching), virtual keys for secure access control, admin dashboard UI for monitoring and management | Direct Python library integration in your codebase, Router with retry/fallback logic across multiple deployments (e.g. Azure/OpenAI) - Router, application-level load balancing and cost tracking, exception handling with OpenAI-compatible errors, observability callbacks (Lunary, MLflow, Langfuse, etc.) |
LiteLLM Performance: 8ms P95 latency at 1k RPS (See benchmarks here)
Jump to LiteLLM Proxy (LLM Gateway) Docs
Jump to Supported LLM Providers
Stable Release: Use docker images with the -stable tag. These have undergone 12 hour load tests, before being published. More information about the release cycle here
Support for more providers. Missing a provider or LLM Platform, raise a feature request.
Supported Providers (Website Supported Models | Docs)
- Setup .env file in root
- Run dependant services
docker-compose up db prometheus
- (In root) create virtual environment
python -m venv .venv - Activate virtual environment
source .venv/bin/activate - Install dependencies
pip install -e ".[all]" - Start proxy backend
python litellm/proxy_cli.py
- Navigate to
ui/litellm-dashboard - Install dependencies
npm install - Run
npm run devto start the dashboard
For companies that need better security, user management and professional support
This covers:
- ✅ Features under the LiteLLM Commercial License:
- ✅ Feature Prioritization
- ✅ Custom Integrations
- ✅ Professional Support - Dedicated discord + slack
- ✅ Custom SLAs
- ✅ Secure access with Single Sign-On
We welcome contributions to LiteLLM! Whether you're fixing bugs, adding features, or improving documentation, we appreciate your help.
This requires poetry to be installed.
git clone https://github.com/BerriAI/litellm.git
cd litellm
make install-dev # Install development dependencies
make format # Format your code
make lint # Run all linting checks
make test-unit # Run unit tests
make format-check # Check formatting onlyFor detailed contributing guidelines, see CONTRIBUTING.md.
LiteLLM follows the Google Python Style Guide.
Our automated checks include:
- Black for code formatting
- Ruff for linting and code quality
- MyPy for type checking
- Circular import detection
- Import safety checks
All these checks must pass before your PR can be merged.
- Schedule Demo 👋
- Community Discord 💭
- Community Slack 💭
- Our numbers 📞 +1 (770) 8783-106 / +1 (412) 618-6238
- Our emails ✉️ ishaan@berri.ai / krrish@berri.ai
- Need for simplicity: Our code started to get extremely complicated managing & translating calls between Azure, OpenAI and Cohere.