A mobile application designed to help the elderly identify fake news and misleading information online.
media_filter/
├── backend/ # Python FastAPI Backend
│ ├── main.py # API Service
│ ├── requirements.txt
│ └── .env.example
├── ios/ # Primary iOS App (Kotlin Multiplatform + SwiftUI)
│ ├── composeApp/ # Shared Kotlin logic
│ └── iosApp/ # SwiftUI app + Share Extension
└── web/ # Web App (Expo)
├── app/ # Application Pages (Router)
└── lib/ # Utilities & API client
cd backend
# Create virtual environment
python3 -m venv venv
source venv/bin/activate # Windows: venv\Scripts\activate
# Install dependencies
pip install -r requirements.txt
# Configure API Key
cp .env.example .env
# Edit .env and fill in your DEEPSEEK_API_KEY
# Note: Currently uses DeepSeek API (OpenAI compatible)
# Start service
python main.pyThe backend will run at http://localhost:8000
cd ios
./gradlew :composeApp:linkDebugFrameworkIosSimulatorArm64Then open ios/iosApp/iosApp.xcodeproj in Xcode and run.
Note: For physical device testing, update baseUrl in ios/composeApp/src/commonMain/kotlin/.../network/MediaFilterApi.kt to your Mac's LAN IP.
cd web
npm install
npm run webThe web app will run at http://localhost:8081
- WeChat Official Account article link analysis
- Direct text input analysis
- Credibility assessment (Reliable / Caution / Misleading)
- Detailed analysis explanations
- iOS Share Extension (share directly from Safari/WeChat)
- Dark/Light theme support
- Douyin video analysis (Planned)
- WeChat Video Channel analysis (Planned)
- Backend: Python, FastAPI, BeautifulSoup, DeepSeek API
- iOS: Kotlin Multiplatform, SwiftUI, Ktor
- Web: React Native (Expo), TypeScript
Developed by the Computerization club, with the assistance of deep neural networks (to learn more, see AI Lab). We are dedicated to helping the community through technology.