Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
42 changes: 41 additions & 1 deletion caim.py
Original file line number Diff line number Diff line change
Expand Up @@ -80,7 +80,7 @@ def _run_feature(feature_series, class_series):
# Starting interval is end to end set
disc_interval = np.array([remaining_int[0], remaining_int[-1]])
remaining_int = remaining_int[1:-1]
f = lambda x: CAIM.compute_caim(CAIM.build_quanta(input_data, x, feature_name, class_name))
f = lambda x: CAIM.compute_ur_caim(CAIM.build_quanta(input_data, x, feature_name, class_name))

global_caim = 0
while not done:
Expand Down Expand Up @@ -149,6 +149,46 @@ def compute_caim(quanta):
return ((max_r**2/m_r).sum()/n).values[0]
#return pd.eval(((max_r**2/m_r).sum()/n))

@staticmethod
def compute_ur_caim(quanta):
# Get the M+r value (number of values in the interval for all classes)
m_r = quanta.sum(axis=0, level=0)

# Get the Mi+ value (number of values in all the intervals for the i's class)
mi_ = quanta.sum(axis=1, level=0)

# Get Max_r (maximum class count for the bin)
max_r = quanta.max(axis=0, level=0)

# This will only count up the number of bins
# that have some items
m = m_r.sum()

pi_ = mi_/m
p_r = m_r/m
pir = quanta/m

# CAIM normalised by the number of continuous values
caim_n = ((max_r**2/m_r).sum()/m).values[0]

# class attribute information
info = ((p_r/pi_).applymap(np.log2)*pir).sum(axis=0, level=0).sum().values[0]

# entropy
h = ((1/pir).applymap(np.log2)*pir).sum(axis=0, level=0).sum().values[0]

# mutual information modified
mi = ((pir/(pi_*p_r)).applymap(np.log2)*(1-pi_)).sum(axis=0, level=0).sum().values[0]

# class attribute interdependence redundancy
cair = mi/h

# class attribute interdependence uncertainty
caiu = info/h

return caim_n*cair*(1-caiu)


def fit_parallel(self, X, Y, n_jobs=8):
self._create_init_data(X, Y)

Expand Down