Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions datafusion/functions/Cargo.toml
Original file line number Diff line number Diff line change
Expand Up @@ -255,6 +255,11 @@ harness = false
name = "find_in_set"
required-features = ["unicode_expressions"]

[[bench]]
harness = false
name = "contains"
required-features = ["string_expressions"]

[[bench]]
harness = false
name = "starts_with"
Expand Down
185 changes: 185 additions & 0 deletions datafusion/functions/benches/contains.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,185 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.

extern crate criterion;

use arrow::array::{StringArray, StringViewArray};
use arrow::datatypes::{DataType, Field};
use criterion::{Criterion, criterion_group, criterion_main};
use datafusion_common::ScalarValue;
use datafusion_common::config::ConfigOptions;
use datafusion_expr::{ColumnarValue, ScalarFunctionArgs};
use rand::distr::Alphanumeric;
use rand::prelude::StdRng;
use rand::{Rng, SeedableRng};
use std::hint::black_box;
use std::sync::Arc;

/// Generate a StringArray/StringViewArray with random ASCII strings
fn gen_string_array(
n_rows: usize,
str_len: usize,
is_string_view: bool,
) -> ColumnarValue {
let mut rng = StdRng::seed_from_u64(42);
let strings: Vec<Option<String>> = (0..n_rows)
.map(|_| {
let s: String = (&mut rng)
.sample_iter(&Alphanumeric)
.take(str_len)
.map(char::from)
.collect();
Some(s)
})
.collect();

if is_string_view {
ColumnarValue::Array(Arc::new(StringViewArray::from(strings)))
} else {
ColumnarValue::Array(Arc::new(StringArray::from(strings)))
}
}

/// Generate a scalar search string
fn gen_scalar_search(search_str: &str, is_string_view: bool) -> ColumnarValue {
if is_string_view {
ColumnarValue::Scalar(ScalarValue::Utf8View(Some(search_str.to_string())))
} else {
ColumnarValue::Scalar(ScalarValue::Utf8(Some(search_str.to_string())))
}
}

/// Generate an array of search strings (same string repeated)
fn gen_array_search(
search_str: &str,
n_rows: usize,
is_string_view: bool,
) -> ColumnarValue {
let strings: Vec<Option<String>> =
(0..n_rows).map(|_| Some(search_str.to_string())).collect();

if is_string_view {
ColumnarValue::Array(Arc::new(StringViewArray::from(strings)))
} else {
ColumnarValue::Array(Arc::new(StringArray::from(strings)))
}
}

fn criterion_benchmark(c: &mut Criterion) {
let contains = datafusion_functions::string::contains();
let n_rows = 8192;
let str_len = 128;
let search_str = "xyz"; // A pattern that likely won't be found

// Benchmark: StringArray with scalar search (the optimized path)
let str_array = gen_string_array(n_rows, str_len, false);
let scalar_search = gen_scalar_search(search_str, false);
let arg_fields = vec![
Field::new("a", DataType::Utf8, true).into(),
Field::new("b", DataType::Utf8, true).into(),
];
let return_field = Field::new("f", DataType::Boolean, true).into();
let config_options = Arc::new(ConfigOptions::default());

c.bench_function("contains_StringArray_scalar_search", |b| {
b.iter(|| {
black_box(contains.invoke_with_args(ScalarFunctionArgs {
args: vec![str_array.clone(), scalar_search.clone()],
arg_fields: arg_fields.clone(),
number_rows: n_rows,
return_field: Arc::clone(&return_field),
config_options: Arc::clone(&config_options),
}))
})
});

// Benchmark: StringArray with array search (for comparison)
let array_search = gen_array_search(search_str, n_rows, false);
c.bench_function("contains_StringArray_array_search", |b| {
b.iter(|| {
black_box(contains.invoke_with_args(ScalarFunctionArgs {
args: vec![str_array.clone(), array_search.clone()],
arg_fields: arg_fields.clone(),
number_rows: n_rows,
return_field: Arc::clone(&return_field),
config_options: Arc::clone(&config_options),
}))
})
});

// Benchmark: StringViewArray with scalar search (the optimized path)
let str_view_array = gen_string_array(n_rows, str_len, true);
let scalar_search_view = gen_scalar_search(search_str, true);
let arg_fields_view = vec![
Field::new("a", DataType::Utf8View, true).into(),
Field::new("b", DataType::Utf8View, true).into(),
];

c.bench_function("contains_StringViewArray_scalar_search", |b| {
b.iter(|| {
black_box(contains.invoke_with_args(ScalarFunctionArgs {
args: vec![str_view_array.clone(), scalar_search_view.clone()],
arg_fields: arg_fields_view.clone(),
number_rows: n_rows,
return_field: Arc::clone(&return_field),
config_options: Arc::clone(&config_options),
}))
})
});

// Benchmark: StringViewArray with array search (for comparison)
let array_search_view = gen_array_search(search_str, n_rows, true);
c.bench_function("contains_StringViewArray_array_search", |b| {
b.iter(|| {
black_box(contains.invoke_with_args(ScalarFunctionArgs {
args: vec![str_view_array.clone(), array_search_view.clone()],
arg_fields: arg_fields_view.clone(),
number_rows: n_rows,
return_field: Arc::clone(&return_field),
config_options: Arc::clone(&config_options),
}))
})
});

// Benchmark different string lengths with scalar search
for str_len in [8, 32, 128, 512] {
let str_array = gen_string_array(n_rows, str_len, true);
let scalar_search = gen_scalar_search(search_str, true);
let arg_fields = vec![
Field::new("a", DataType::Utf8View, true).into(),
Field::new("b", DataType::Utf8View, true).into(),
];

c.bench_function(
&format!("contains_StringViewArray_scalar_strlen_{str_len}"),
|b| {
b.iter(|| {
black_box(contains.invoke_with_args(ScalarFunctionArgs {
args: vec![str_array.clone(), scalar_search.clone()],
arg_fields: arg_fields.clone(),
number_rows: n_rows,
return_field: Arc::clone(&return_field),
config_options: Arc::clone(&config_options),
}))
})
},
);
}
}

criterion_group!(benches, criterion_benchmark);
criterion_main!(benches);
89 changes: 58 additions & 31 deletions datafusion/functions/src/string/contains.rs
Original file line number Diff line number Diff line change
Expand Up @@ -15,13 +15,12 @@
// specific language governing permissions and limitations
// under the License.

use crate::utils::make_scalar_function;
use arrow::array::{Array, ArrayRef, AsArray};
use arrow::array::{Array, ArrayRef, Scalar};
use arrow::compute::contains as arrow_contains;
use arrow::datatypes::DataType;
use arrow::datatypes::DataType::{Boolean, LargeUtf8, Utf8, Utf8View};
use datafusion_common::types::logical_string;
use datafusion_common::{DataFusionError, Result, exec_err};
use datafusion_common::{Result, exec_err};
use datafusion_expr::binary::{binary_to_string_coercion, string_coercion};
use datafusion_expr::{
Coercion, ColumnarValue, Documentation, ScalarFunctionArgs, ScalarUDFImpl, Signature,
Expand Down Expand Up @@ -89,51 +88,79 @@ impl ScalarUDFImpl for ContainsFunc {
}

fn invoke_with_args(&self, args: ScalarFunctionArgs) -> Result<ColumnarValue> {
make_scalar_function(contains, vec![])(&args.args)
contains(args.args.as_slice())
}

fn documentation(&self) -> Option<&Documentation> {
self.doc()
}
}

fn to_array(value: &ColumnarValue) -> Result<(ArrayRef, bool)> {
match value {
ColumnarValue::Array(array) => Ok((Arc::clone(array), false)),
ColumnarValue::Scalar(scalar) => Ok((scalar.to_array()?, true)),
}
}

/// Helper to call arrow_contains with proper Datum handling.
/// When an argument is marked as scalar, we wrap it in `Scalar` to tell arrow's
/// kernel to use the optimized single-value code path instead of iterating.
fn call_arrow_contains(
haystack: &ArrayRef,
haystack_is_scalar: bool,
needle: &ArrayRef,
needle_is_scalar: bool,
) -> Result<ColumnarValue> {
// Arrow's Datum trait is implemented for ArrayRef, Arc<dyn Array>, and Scalar<T>
// We pass ArrayRef directly when not scalar, or wrap in Scalar when it is
let result = match (haystack_is_scalar, needle_is_scalar) {
(false, false) => arrow_contains(haystack, needle)?,
(false, true) => arrow_contains(haystack, &Scalar::new(Arc::clone(needle)))?,
(true, false) => arrow_contains(&Scalar::new(Arc::clone(haystack)), needle)?,
(true, true) => arrow_contains(
&Scalar::new(Arc::clone(haystack)),
&Scalar::new(Arc::clone(needle)),
)?,
Comment on lines +118 to +124
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I wonder if we could implement Datum on ColumnerValue (or at least on ScalarValue), so we wouldn't need to do this check & wrapping logic in each function we optimize 🤔

};

// If both inputs were scalar, return a scalar result
if haystack_is_scalar && needle_is_scalar {
let scalar = datafusion_common::ScalarValue::try_from_array(&result, 0)?;
Ok(ColumnarValue::Scalar(scalar))
} else {
Ok(ColumnarValue::Array(Arc::new(result)))
}
}

/// use `arrow::compute::contains` to do the calculation for contains
fn contains(args: &[ArrayRef]) -> Result<ArrayRef, DataFusionError> {
fn contains(args: &[ColumnarValue]) -> Result<ColumnarValue> {
let (haystack, haystack_is_scalar) = to_array(&args[0])?;
let (needle, needle_is_scalar) = to_array(&args[1])?;

if let Some(coercion_data_type) =
string_coercion(args[0].data_type(), args[1].data_type()).or_else(|| {
binary_to_string_coercion(args[0].data_type(), args[1].data_type())
string_coercion(haystack.data_type(), needle.data_type()).or_else(|| {
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

another potential optimizations is to call coercion/datatype stuff only once, rather than per every batch

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I took a quick look, and it didn't seem to make much difference to performance.

binary_to_string_coercion(haystack.data_type(), needle.data_type())
})
{
let arg0 = if args[0].data_type() == &coercion_data_type {
Arc::clone(&args[0])
let haystack = if haystack.data_type() == &coercion_data_type {
haystack
} else {
arrow::compute::kernels::cast::cast(&args[0], &coercion_data_type)?
arrow::compute::kernels::cast::cast(&haystack, &coercion_data_type)?
};
let arg1 = if args[1].data_type() == &coercion_data_type {
Arc::clone(&args[1])
let needle = if needle.data_type() == &coercion_data_type {
needle
} else {
arrow::compute::kernels::cast::cast(&args[1], &coercion_data_type)?
arrow::compute::kernels::cast::cast(&needle, &coercion_data_type)?
};

match coercion_data_type {
Utf8View => {
let mod_str = arg0.as_string_view();
let match_str = arg1.as_string_view();
let res = arrow_contains(mod_str, match_str)?;
Ok(Arc::new(res) as ArrayRef)
}
Utf8 => {
let mod_str = arg0.as_string::<i32>();
let match_str = arg1.as_string::<i32>();
let res = arrow_contains(mod_str, match_str)?;
Ok(Arc::new(res) as ArrayRef)
}
LargeUtf8 => {
let mod_str = arg0.as_string::<i64>();
let match_str = arg1.as_string::<i64>();
let res = arrow_contains(mod_str, match_str)?;
Ok(Arc::new(res) as ArrayRef)
}
Utf8View | Utf8 | LargeUtf8 => call_arrow_contains(
&haystack,
haystack_is_scalar,
&needle,
needle_is_scalar,
),
other => {
exec_err!("Unsupported data type {other:?} for function `contains`.")
}
Expand Down