Skip to content

lukDev/deep_learning_basics

Repository files navigation

Deep Learning Basics

Description

Basics of deep learning, implemented using NumPy.

Areas covered are feedforward neural networks, simple backpropagation and stochastic gradient descent.

Disclaimer

This project is merely a collection of experiments and self-written elements in the area of deep learning and does not aspire to be especially efficient or general. All of the code developed for these implementations of deep learning applications serves the purpose of understanding the underlying mechanics better and does NOT challenge any existing frameworks or libraries.

Reference

Most of the code is an implementation (albeit with modifications) of algorithms and concepts presented in Deep Learning - Goodfellow, Bengio, Courville.

About

A project containing implementations of fundamental deep learning concepts.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages